AlongTrack Data - SWOT#
In this notebook, we will look at how one can do some simple regridding processes with the AlongTrack SWOT data available from the 2020a OSSE Data Challenge.
import autoroot
import typing as tp
from dataclasses import dataclass
import functools as ft
import numpy as np
import pandas as pd
import xarray as xr
import einops
from metpy.units import units
import pint_xarray
import xarray_dataclasses as xrdataclass
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.ticker as ticker
import seaborn as sns
sns.reset_defaults()
sns.set_context(context="talk", font_scale=0.7)
%load_ext autoreload
%autoreload 2
The autoreload extension is already loaded. To reload it, use:
%reload_ext autoreload
Data#
!ls "/gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/raw/dc_obs/"
2020a_SSH_mapping_NATL60_envisat.nc
2020a_SSH_mapping_NATL60_geosat2.nc
2020a_SSH_mapping_NATL60_jason1.nc
2020a_SSH_mapping_NATL60_karin_swot.nc
2020a_SSH_mapping_NATL60_nadir_swot.nc
2020a_SSH_mapping_NATL60_topex-poseidon_interleaved.nc
files_nadir_dc20a = [
"/gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/raw/dc_obs/2020a_SSH_mapping_NATL60_jason1.nc",
"/gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/raw/dc_obs/2020a_SSH_mapping_NATL60_envisat.nc",
"/gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/raw/dc_obs/2020a_SSH_mapping_NATL60_geosat2.nc",
"/gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/raw/dc_obs/2020a_SSH_mapping_NATL60_topex-poseidon_interleaved.nc",
"/gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/raw/dc_obs/2020a_SSH_mapping_NATL60_nadir_swot.nc",
]
files_swot_dc20a = [
"/gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/raw/dc_obs/2020a_SSH_mapping_NATL60_karin_swot.nc",
]
ds_swot = xr.open_dataset(files_swot_dc20a[0])
ds_swot
<xarray.Dataset> Dimensions: (nC: 52, time: 188121) Coordinates: * nC (nC) int64 0 1 2 3 4 5 6 7 8 9 ... 43 44 45 46 47 48 49 50 51 * time (time) datetime64[ns] 2012-10-02T18:03:42.401288 ... 2013-09... Data variables: (12/14) lon (nC, time) float64 ... lat (nC, time) float64 ... x_al (nC, time) float32 ... x_ac (nC, time) float32 ... lon_nadir (nC, time) float64 ... lat_nadir (nC, time) float64 ... ... ... ssh_obs (nC, time) float64 ... roll_err (nC, time) float64 ... phase_err (nC, time) float64 ... ssh_model (nC, time) float64 ... bd_err (nC, time) float64 ... karin_err (nC, time) float64 ... Attributes: (12/26) description: SWOT fixed grid corresponding_grid: /data/MSA_ETU/mballarotta/ETUDE_BOOST-SWOT/out... title: SWOT-like data simulated by SWOT simulator keywords: SWOT, altimetry, SSH, satellite, remote sensing Conventions: CF-1.6 summary: SWOT grid data produced ... ... geospatial_lon_units: degrees_east project: SWOT date_created: 2018-11-27T16:45:37Z date_modified: 2018-11-27T16:45:37Z keywords_vocabulary: NASA references: Gaultier, L., C. Ubelmann, and L.-L. Fu, 2016:...
from oceanbench._src.geoprocessing.validation import validate_latlon, validate_time, decode_cf_time, validate_ssh
from oceanbench._src.preprocessing.alongtrack import alongtrack_ssh
from oceanbench._src.geoprocessing.subset import where_slice
from oceanbench._src.preprocessing.alongtrack import remove_swath_dimension
def preprocess_nadir(da):
# validate coordinates
da = validate_latlon(da)
da = validate_time(da)
# validate variables
da = da.rename({"ssh_model": "ssh"})
da = validate_ssh(da)
# slice time period
da = da.sel(time=slice("2012-10-22", "2012-12-03"))
# slice region
da = where_slice(da, "lon", -64.975, -55.007)
da = where_slice(da, "lat", 33.025, 42.9917)
# reorganized
da = da.sortby("time")
# assign coordinates
da = da.set_coords(["time", "lat", "lon"])
return da # da[["ssh"]]
def preprocess_swot(da):
# validate coordinates
da = validate_latlon(da)
da = validate_time(da)
# validate variables
da = da.rename({"ssh_model": "ssh"})
da = validate_ssh(da)
# slice time period
da = da.sel(time=slice("2012-10-22", "2012-12-03"))
# remove SWATH dimension
da = remove_swath_dimension(da, "nC")
# slice region
da = where_slice(da, "lon", -64.975, -55.007)
da = where_slice(da, "lat", 33.025, 42.9917)
# reorganized
da = da.sortby("time")
# assign coordinates
da = da.set_coords(["time", "lat", "lon"])
return da #da[["ssh"]]
# preprocess_fn = ft.partial(preprocess_nadir_dc20a, variable="ssh_model")
ds_nadir = xr.open_mfdataset(
files_nadir_dc20a,
preprocess=preprocess_nadir,
combine="nested",
engine="netcdf4",
concat_dim="time"
)
ds_nadir = ds_nadir.sortby("time").compute()
ds_nadir
/gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/indexing.py:1374: PerformanceWarning: Slicing with an out-of-order index is generating 139 times more chunks
return self.array[key]
/gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/indexing.py:1374: PerformanceWarning: Slicing with an out-of-order index is generating 139 times more chunks
return self.array[key]
/gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/indexing.py:1374: PerformanceWarning: Slicing with an out-of-order index is generating 139 times more chunks
return self.array[key]
/gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/indexing.py:1374: PerformanceWarning: Slicing with an out-of-order index is generating 139 times more chunks
return self.array[key]
/gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/indexing.py:1374: PerformanceWarning: Slicing with an out-of-order index is generating 139 times more chunks
return self.array[key]
/gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/indexing.py:1374: PerformanceWarning: Slicing with an out-of-order index is generating 139 times more chunks
return self.array[key]
/gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/indexing.py:1374: PerformanceWarning: Slicing with an out-of-order index is generating 139 times more chunks
return self.array[key]
/gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/indexing.py:1374: PerformanceWarning: Slicing with an out-of-order index is generating 139 times more chunks
return self.array[key]
<xarray.Dataset> Dimensions: (time: 42468, cycle: 1) Coordinates: lon (time) float64 -55.03 -55.06 -55.1 ... -64.89 -64.93 -64.97 lat (time) float64 39.58 39.53 39.47 39.42 ... 42.12 42.17 42.22 * time (time) datetime64[ns] 2012-10-22T11:16:43.687588 ... 2012-12... Dimensions without coordinates: cycle Data variables: x_al (time) float32 1.008e+06 1.008e+06 ... 5.373e+06 5.373e+06 ncycle (time, cycle) timedelta64[ns] 17 days 09:34:50.917929600 ...... model_index (time) float32 515.0 515.0 515.0 ... 1.533e+03 1.533e+03 ssh_obs (time) float64 0.975 1.008 1.009 ... -0.0774 -0.0679 -0.0703 ssh (time) float64 0.9958 1.014 1.027 ... -0.0576 -0.0568 -0.051 nadir_err (time) float64 -0.0208 -0.0061 -0.0182 ... -0.0111 -0.0193 Attributes: (12/26) description: SWOT fixed grid corresponding_grid: title: Altimeter like data simulated by SWOT simulator keywords: check keywords Conventions: CF-1.6 summary: SWOT grid data produced ... ... geospatial_lon_units: degrees_east project: SWOT date_created: 2018-10-12T12:39:50Z date_modified: 2018-10-12T12:39:50Z keywords_vocabulary: NASA references: Gaultier, L., C. Ubelmann, and L.-L. Fu, 2016:...
%matplotlib inline
fig, ax = plt.subplots()
sub_ds = ds_nadir.sel(time=slice("2012-10-26","2012-10-26"))
variable = "ssh"
pts = ax.scatter(sub_ds.lon, sub_ds.lat, c=sub_ds[variable], s=0.1)
ax.set(
xlabel="Longitude",
ylabel="Latitude",
xlim=[-65., -55.],
ylim=[33., 43.]
)
plt.colorbar(pts, label="Sea Surface Height [m]")
plt.tight_layout()
plt.show()
%%time
ds_swot = xr.open_mfdataset(
files_swot_dc20a,
preprocess=preprocess_swot,
combine="nested",
engine="netcdf4",
concat_dim="time"
)
ds_swot = ds_swot.sortby("time").compute()
ds_swot
CPU times: user 17.2 s, sys: 4.08 s, total: 21.3 s
Wall time: 18.1 s
<xarray.Dataset> Dimensions: (time: 955000) Coordinates: lon (time) float64 -55.4 -55.37 -55.39 ... -64.45 -64.47 -64.5 lat (time) float64 42.99 42.99 42.97 42.97 ... 42.98 42.99 42.99 * time (time) datetime64[ns] 2012-10-23T18:04:12.393963 ... 2012-11... Data variables: (12/13) x_al (time) float32 1.001e+06 1.001e+06 ... 1.01e+07 1.01e+07 x_ac (time) float32 -60.0 -58.0 -60.0 -58.0 ... -60.0 -58.0 -56.0 lon_nadir (time) float64 305.3 305.3 305.3 305.3 ... 294.8 294.8 294.8 lat_nadir (time) float64 43.12 43.12 43.1 43.1 ... 43.1 43.12 43.12 43.12 model_index (time) float32 546.0 546.0 546.0 ... 1.446e+03 1.446e+03 timing_err (time) float64 0.00496 0.00496 0.004528 ... -0.03043 -0.03043 ... ... roll_err (time) float64 -0.1154 -0.1116 -0.1102 ... 0.07341 0.07088 phase_err (time) float64 0.06866 0.06637 0.06041 ... 0.04271 0.04124 ssh (time) float64 -0.0096 -0.0116 -0.0083 ... -0.0444 -0.0518 bd_err (time) float64 0.009219 0.008615 ... -0.004289 -0.003999 karin_err (time) float64 -0.0198 0.0012 0.0096 ... 0.0122 -0.0247 -0.0235 nC (time) float64 0.0 1.0 0.0 1.0 2.0 3.0 ... 5.0 6.0 0.0 1.0 2.0 Attributes: (12/26) description: SWOT fixed grid corresponding_grid: /data/MSA_ETU/mballarotta/ETUDE_BOOST-SWOT/out... title: SWOT-like data simulated by SWOT simulator keywords: SWOT, altimetry, SSH, satellite, remote sensing Conventions: CF-1.6 summary: SWOT grid data produced ... ... geospatial_lon_units: degrees_east project: SWOT date_created: 2018-11-27T16:45:37Z date_modified: 2018-11-27T16:45:37Z keywords_vocabulary: NASA references: Gaultier, L., C. Ubelmann, and L.-L. Fu, 2016:...
%matplotlib inline
fig, ax = plt.subplots()
sub_ds = ds_swot.sel(time=slice("2012-10-26","2012-10-26"))
variable = "ssh"
pts = ax.scatter(sub_ds.lon, sub_ds.lat, c=sub_ds[variable], s=0.1)
ax.set(
xlabel="Longitude",
ylabel="Latitude",
xlim=[-65., -55.],
ylim=[33., 43.]
)
plt.colorbar(pts, label="Sea Surface Height [m]")
plt.tight_layout()
plt.show()
SWOT + NADIR#
ds_nadir
<xarray.Dataset> Dimensions: (time: 42468, cycle: 1) Coordinates: lon (time) float64 -55.03 -55.06 -55.1 ... -64.89 -64.93 -64.97 lat (time) float64 39.58 39.53 39.47 39.42 ... 42.12 42.17 42.22 * time (time) datetime64[ns] 2012-10-22T11:16:43.687588 ... 2012-12... Dimensions without coordinates: cycle Data variables: x_al (time) float32 1.008e+06 1.008e+06 ... 5.373e+06 5.373e+06 ncycle (time, cycle) timedelta64[ns] 17 days 09:34:50.917929600 ...... model_index (time) float32 515.0 515.0 515.0 ... 1.533e+03 1.533e+03 ssh_obs (time) float64 0.975 1.008 1.009 ... -0.0774 -0.0679 -0.0703 ssh (time) float64 0.9958 1.014 1.027 ... -0.0576 -0.0568 -0.051 nadir_err (time) float64 -0.0208 -0.0061 -0.0182 ... -0.0111 -0.0193 Attributes: (12/26) description: SWOT fixed grid corresponding_grid: title: Altimeter like data simulated by SWOT simulator keywords: check keywords Conventions: CF-1.6 summary: SWOT grid data produced ... ... geospatial_lon_units: degrees_east project: SWOT date_created: 2018-10-12T12:39:50Z date_modified: 2018-10-12T12:39:50Z keywords_vocabulary: NASA references: Gaultier, L., C. Ubelmann, and L.-L. Fu, 2016:...
ds_swot
<xarray.Dataset> Dimensions: (time: 955000) Coordinates: lon (time) float64 -55.4 -55.37 -55.39 ... -64.45 -64.47 -64.5 lat (time) float64 42.99 42.99 42.97 42.97 ... 42.98 42.99 42.99 * time (time) datetime64[ns] 2012-10-23T18:04:12.393963 ... 2012-11... Data variables: (12/13) x_al (time) float32 1.001e+06 1.001e+06 ... 1.01e+07 1.01e+07 x_ac (time) float32 -60.0 -58.0 -60.0 -58.0 ... -60.0 -58.0 -56.0 lon_nadir (time) float64 305.3 305.3 305.3 305.3 ... 294.8 294.8 294.8 lat_nadir (time) float64 43.12 43.12 43.1 43.1 ... 43.1 43.12 43.12 43.12 model_index (time) float32 546.0 546.0 546.0 ... 1.446e+03 1.446e+03 timing_err (time) float64 0.00496 0.00496 0.004528 ... -0.03043 -0.03043 ... ... roll_err (time) float64 -0.1154 -0.1116 -0.1102 ... 0.07341 0.07088 phase_err (time) float64 0.06866 0.06637 0.06041 ... 0.04271 0.04124 ssh (time) float64 -0.0096 -0.0116 -0.0083 ... -0.0444 -0.0518 bd_err (time) float64 0.009219 0.008615 ... -0.004289 -0.003999 karin_err (time) float64 -0.0198 0.0012 0.0096 ... 0.0122 -0.0247 -0.0235 nC (time) float64 0.0 1.0 0.0 1.0 2.0 3.0 ... 5.0 6.0 0.0 1.0 2.0 Attributes: (12/26) description: SWOT fixed grid corresponding_grid: /data/MSA_ETU/mballarotta/ETUDE_BOOST-SWOT/out... title: SWOT-like data simulated by SWOT simulator keywords: SWOT, altimetry, SSH, satellite, remote sensing Conventions: CF-1.6 summary: SWOT grid data produced ... ... geospatial_lon_units: degrees_east project: SWOT date_created: 2018-11-27T16:45:37Z date_modified: 2018-11-27T16:45:37Z keywords_vocabulary: NASA references: Gaultier, L., C. Ubelmann, and L.-L. Fu, 2016:...
builtins
ds_swotnadir = xr.concat(
[ds_nadir, ds_swot],
# compat="override",
# data_vars=["ssh"],
# coords="minimal",
dim="time",
).sortby("time")
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/dataset.py:1340, in Dataset._construct_dataarray(self, name)
1339 try:
-> 1340 variable = self._variables[name]
1341 except KeyError:
KeyError: 'ncycle'
During handling of the above exception, another exception occurred:
KeyError Traceback (most recent call last)
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/concat.py:556, in _dataset_concat(datasets, dim, data_vars, coords, compat, positions, fill_value, join, combine_attrs)
555 try:
--> 556 vars = ensure_common_dims([ds[name].variable for ds in datasets])
557 except KeyError:
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/concat.py:556, in <listcomp>(.0)
555 try:
--> 556 vars = ensure_common_dims([ds[name].variable for ds in datasets])
557 except KeyError:
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/dataset.py:1431, in Dataset.__getitem__(self, key)
1430 if utils.hashable(key):
-> 1431 return self._construct_dataarray(key)
1432 if utils.iterable_of_hashable(key):
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/dataset.py:1342, in Dataset._construct_dataarray(self, name)
1341 except KeyError:
-> 1342 _, name, variable = _get_virtual_variable(self._variables, name, self.dims)
1344 needed_dims = set(variable.dims)
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/dataset.py:178, in _get_virtual_variable(variables, key, dim_sizes)
177 if len(split_key) != 2:
--> 178 raise KeyError(key)
180 ref_name, var_name = split_key
KeyError: 'ncycle'
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
Cell In[44], line 1
----> 1 ds_swotnadir = xr.concat(
2 [ds_nadir, ds_swot],
3 # compat="override",
4 # data_vars=["ssh"],
5 # coords="minimal",
6 dim="time",
7 ).sortby("time")
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/concat.py:243, in concat(objs, dim, data_vars, coords, compat, positions, fill_value, join, combine_attrs)
231 return _dataarray_concat(
232 objs,
233 dim=dim,
(...)
240 combine_attrs=combine_attrs,
241 )
242 elif isinstance(first_obj, Dataset):
--> 243 return _dataset_concat(
244 objs,
245 dim=dim,
246 data_vars=data_vars,
247 coords=coords,
248 compat=compat,
249 positions=positions,
250 fill_value=fill_value,
251 join=join,
252 combine_attrs=combine_attrs,
253 )
254 else:
255 raise TypeError(
256 "can only concatenate xarray Dataset and DataArray "
257 f"objects, got {type(first_obj)}"
258 )
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/concat.py:558, in _dataset_concat(datasets, dim, data_vars, coords, compat, positions, fill_value, join, combine_attrs)
556 vars = ensure_common_dims([ds[name].variable for ds in datasets])
557 except KeyError:
--> 558 raise ValueError(f"{name!r} is not present in all datasets.")
560 # Try concatenate the indexes, concatenate the variables when no index
561 # is found on all datasets.
562 indexes: list[Index] = list(get_indexes(name))
ValueError: 'ncycle' is not present in all datasets.
Now, let’s combine the best of both worlds!
ds_swotnadir = xr.concat(
[ds_nadir.drop("ncycle"), ds_swot],
data_vars=["ssh"],
coords="minimal",
dim="time",
).sortby("time")
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/dataset.py:1340, in Dataset._construct_dataarray(self, name)
1339 try:
-> 1340 variable = self._variables[name]
1341 except KeyError:
KeyError: 'nadir_err'
During handling of the above exception, another exception occurred:
KeyError Traceback (most recent call last)
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/concat.py:556, in _dataset_concat(datasets, dim, data_vars, coords, compat, positions, fill_value, join, combine_attrs)
555 try:
--> 556 vars = ensure_common_dims([ds[name].variable for ds in datasets])
557 except KeyError:
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/concat.py:556, in <listcomp>(.0)
555 try:
--> 556 vars = ensure_common_dims([ds[name].variable for ds in datasets])
557 except KeyError:
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/dataset.py:1431, in Dataset.__getitem__(self, key)
1430 if utils.hashable(key):
-> 1431 return self._construct_dataarray(key)
1432 if utils.iterable_of_hashable(key):
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/dataset.py:1342, in Dataset._construct_dataarray(self, name)
1341 except KeyError:
-> 1342 _, name, variable = _get_virtual_variable(self._variables, name, self.dims)
1344 needed_dims = set(variable.dims)
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/dataset.py:178, in _get_virtual_variable(variables, key, dim_sizes)
177 if len(split_key) != 2:
--> 178 raise KeyError(key)
180 ref_name, var_name = split_key
KeyError: 'nadir_err'
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
Cell In[35], line 1
----> 1 ds_swotnadir = xr.concat(
2 [ds_nadir.drop("ncycle"), ds_swot],
3 data_vars=["ssh"],
4 coords="minimal",
5 dim="time",
6 ).sortby("time")
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/concat.py:243, in concat(objs, dim, data_vars, coords, compat, positions, fill_value, join, combine_attrs)
231 return _dataarray_concat(
232 objs,
233 dim=dim,
(...)
240 combine_attrs=combine_attrs,
241 )
242 elif isinstance(first_obj, Dataset):
--> 243 return _dataset_concat(
244 objs,
245 dim=dim,
246 data_vars=data_vars,
247 coords=coords,
248 compat=compat,
249 positions=positions,
250 fill_value=fill_value,
251 join=join,
252 combine_attrs=combine_attrs,
253 )
254 else:
255 raise TypeError(
256 "can only concatenate xarray Dataset and DataArray "
257 f"objects, got {type(first_obj)}"
258 )
File /gpfsscratch/rech/cli/uvo53rl/miniconda3/envs/jejeqx/lib/python3.10/site-packages/xarray/core/concat.py:558, in _dataset_concat(datasets, dim, data_vars, coords, compat, positions, fill_value, join, combine_attrs)
556 vars = ensure_common_dims([ds[name].variable for ds in datasets])
557 except KeyError:
--> 558 raise ValueError(f"{name!r} is not present in all datasets.")
560 # Try concatenate the indexes, concatenate the variables when no index
561 # is found on all datasets.
562 indexes: list[Index] = list(get_indexes(name))
ValueError: 'nadir_err' is not present in all datasets.
import xarray as xr
xr.concat(
ds_swotnadir
<xarray.Dataset> Dimensions: (time: 997468) Coordinates: lon (time) float64 -55.03 -55.06 -55.1 -55.13 ... -64.89 -64.93 -64.97 lat (time) float64 39.58 39.53 39.47 39.42 ... 42.06 42.12 42.17 42.22 * time (time) datetime64[ns] 2012-10-22T11:16:43.687588 ... 2012-12-03T... Data variables: ssh (time) float64 0.9958 1.014 1.027 1.032 ... -0.0576 -0.0568 -0.051 Attributes: (12/26) description: SWOT fixed grid corresponding_grid: title: Altimeter like data simulated by SWOT simulator keywords: check keywords Conventions: CF-1.6 summary: SWOT grid data produced ... ... geospatial_lon_units: degrees_east project: SWOT date_created: 2018-10-12T12:39:50Z date_modified: 2018-10-12T12:39:50Z keywords_vocabulary: NASA references: Gaultier, L., C. Ubelmann, and L.-L. Fu, 2016:...
%matplotlib inline
fig, ax = plt.subplots()
sub_ds = ds_swotnadir.sel(time=slice("2012-10-26","2012-10-26"))
variable = "ssh"
pts = ax.scatter(sub_ds.lon, sub_ds.lat, c=sub_ds[variable], s=0.1)
ax.set(
xlabel="Longitude",
ylabel="Latitude",
xlim=[-65., -55.],
ylim=[33., 43.]
)
plt.colorbar(pts, label="Sea Surface Height [m]")
plt.tight_layout()
plt.show()
Gridding#
!ls /gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/staging/natl60/
NATL60-CJM165_GULFSTREAM_ssh_y2013.1y.decoded.nc
NATL60-CJM165_GULFSTREAM_ssh_y2013.1y.nc
NATL60-CJM165_GULFSTREAM_sss_y2013.1y.nc
NATL60-CJM165_GULFSTREAM_sst_y2013.1y.nc
file_natl60 = "/gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/staging/natl60/NATL60-CJM165_GULFSTREAM_ssh_y2013.1y.nc"
def preprocess_natl60(da):
da = validate_latlon(da)
da = validate_time(da)
da = decode_cf_time(da, units="seconds since 2012-10-01")
da = validate_ssh(da)
return da
%%time
files_natl60 = "/gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/staging/natl60/NATL60-CJM165_GULFSTREAM_ssh_y2013.1y.nc"
ds_natl60 = xr.open_mfdataset(
files_natl60,
decode_times=False,
preprocess=preprocess_natl60,
combine="nested",
engine="netcdf4",
concat_dim="time"
)
ds_natl60 = ds_natl60.sortby("time").compute()
ds_natl60
CPU times: user 36.5 ms, sys: 60.2 ms, total: 96.7 ms
Wall time: 96.8 ms
<xarray.Dataset> Dimensions: (time: 365, lat: 201, lon: 201) Coordinates: * lon (lon) float64 -65.0 -64.95 -64.9 -64.85 ... -55.1 -55.05 -55.0 * lat (lat) float64 33.0 33.05 33.1 33.15 33.2 ... 42.85 42.9 42.95 43.0 * time (time) datetime64[ns] 2012-10-01 2012-10-02 ... 2013-09-30 Data variables: ssh (time, lat, lon) float64 0.5019 0.5019 0.5097 ... -0.135 -0.135
Data Structure#
from oceanbench._src.geoprocessing.gridding import coord_based_to_grid
%%time
ds_nadir_gridded = coord_based_to_grid(
ds_nadir,
ds_natl60,
data_vars=["ssh"],
t_res=pd.to_timedelta(12, unit="hour")
)
CPU times: user 2.38 s, sys: 29.7 ms, total: 2.41 s
Wall time: 2.42 s
%%time
ds_swot_gridded = coord_based_to_grid(
ds_swot,
ds_natl60,
data_vars=["ssh"],
t_res=pd.to_timedelta(12, unit="hour")
)
CPU times: user 4.25 s, sys: 20.8 ms, total: 4.27 s
Wall time: 4.29 s
%%time
ds_swotnadir_gridded = coord_based_to_grid(
ds_swotnadir,
ds_natl60,
data_vars=["ssh"],
t_res=pd.to_timedelta(12, unit="hour")
)
CPU times: user 4.36 s, sys: 30.9 ms, total: 4.39 s
Wall time: 4.41 s
import holoviews as hv
hv.extension("matplotlib")
variable = "ssh" # "vort_r" # "ke" #
cmap = "viridis" # "RdBu_r" # "YlGnBu_r" #
field_name = "NATL60"
ssh_ds = xr.Dataset({
field_name: ds_natl60[variable],
"NADIR": np.isfinite(ds_nadir_gridded[variable]),
"SWOT": np.isfinite(ds_swot_gridded[variable]),
"SWOTNADIR": np.isfinite(ds_swotnadir_gridded[variable]),
})
to_plot_ds = ssh_ds.transpose("time", "lat", "lon")#.isel(time=slice(25, 55, 1))
clim = (
to_plot_ds[
[field_name, "NADIR", "SWOT", "SWOTNADIR"]
].to_array().pipe(lambda da: (da.quantile(0.005).item(), da.quantile(0.995).item()))
)
images = hv.Layout([
hv.Dataset(to_plot_ds)
.to(hv.QuadMesh, ["lon", "lat"], v).relabel(v)
.options(cmap=cmap, clim=clim)
for v in to_plot_ds]
).cols(2).opts(sublabel_format="")
hv.output(images, holomap="gif", fps=2, dpi=125)
# hv.save(images, filename="dc20a_natl60", fmt="gif", fps=2, dpi=125)