Skip to content

Part I - Loading the ESDC

In this tutorial, we will walk through how one can access the ESDC. Fortunately, we have 2 ways: locally and through the internet. I have already personally downloading the cubes to our in-house server. But for reproducibility purposes, the cubes can be accessed externally as well. So we will walk-through the two ways that this is possible.

import sys, os
from pyprojroot import here
root = here(project_files=[".here"])
sys.path.append(str(here()))

import pathlib

from xcube.core.dsio import open_cube
import pathlib
import xarray as xr

DATA_PATH = pathlib.Path("/media/disk/databases/ESDC/")

FIG_PATH = pathlib.Path(str(here()), 'reports/figures/spa_temp')
!ls /media/disk/databases/
ASTER                      LSASAF
BACI-CABLAB                 MODIS
BBDD_video_image                MODIS_IGBP_LandCover
BELMANIP                    MULTILAI
Belmanip2_VGT_MOD_CYC_2003_2007_v2      NEUROEXPLORA_2016
BigEarth                    NEUROEXPLORA_2018
BLACKCARBON                 NEUROEXPLORA_2019
C2X                     NWPU-RESISC45
CARTOGRAFICO                    OCEANCLORO
CASIAHS                     ODE_data
CAUSALITY                   PatternNet
CHRISLAI                    PHENOCAM
CMIX                        PhiLab_UNOSAT_challenge
DROUGHT                     PROBAV_CLOUDS
EMULATEDS2                  PROSAIL_EMULATOR_CAUSAL
ESACCI-LandCover                PROSPECT
ESDC                        S1S2Luca
EuroSAT                     S1S2Transfer
FLUXCOM                     SEN12MS
GF_Landsat_2013_Irrigated_project       SENTINEL2_CLOUDS
GFZSIF                      SHAPEFILES
Global_TRY_maps_V1              SIx
HL_20151110_C2A_noFlu_spec_Rrs_norm_10.txt  SMADI
HYPERLABELME                    SMOS-IC
HYPERLABELME_OLD_DATA               SMOS_SSSMed
IASI_data                   SMOS_VOD
IASI Tim                    SPARC
iclradiant                  StreamFlow
IGARSS2019                  SYKE
indian_wheat_yield              TCEP_CAUSAL
Inputs_GLOBAL_Trait_spatialization3km       temp
IRRADIANCE                  TRAITS
KAUSAL                      UCMERCED
LANDSAT7_CLOUDS                 USGS
LANDSAT8_CLOUDS                 WORLDFLOODS
LANDSAT8_SPARCS                 xview2_challenge
Land-Use

Method I - Online

For this first example, we will load the cubes from the server. Then we can view the cubes.

ONLINE_CUBE = "https://obs.eu-de.otc.t-systems.com"
CUBE = "obs-esdc-v2.1"
LOW_RES = "obs-esdc-v2.1/esdc-8d-0.25deg-1x720x1440-2.1.0.zarr"
CUBE_VERSION = "2.1.0"
EXT = ".zarr"
ESDC_PATH = "obs-esdc-v2.1/esdc-8d-1x720x1440-2.1.0.zarr"
INFO_EARTH = [
    "gross_primary_productivity",
    "root_moisture",
    "precipitation",
    "leaf_area_index",
    "land_surface_temperature",
]

path = (
    f"{ONLINE_CUBE}/{LOW_RES}"
)

https://obs.eu-de.otc.t-systems.com/obs-esdc-v2.0.0/esdc-8d-0.25deg-1x720x1440-2.0.0.zarr

path
'https://obs.eu-de.otc.t-systems.com/obs-esdc-v2.1/esdc-8d-0.25deg-1x720x1440-2.1.0.zarr'
raw_path = "/media/disk/erc/papers/2020_rbig_eo"
!mkdir $raw_path/raw
t = open_cube(str(path))
# load cube from bit bucket
cube_from_s3_bucket = open_cube("https://obs.eu-de.otc.t-systems.com/obs-esdc-v2.0.0/esdc-8d-0.25deg-1x720x1440-2.0.0.zarr")
cube_from_s3_bucket
Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • bnds: 2
    • lat: 720
    • lon: 1440
    • time: 1702
    • lat
      (lat)
      float32
      89.875 89.625 ... -89.625 -89.875
      array([ 89.875,  89.625,  89.375, ..., -89.375, -89.625, -89.875],
            dtype=float32)
    • lat_bnds
      (lat, bnds)
      float32
      dask.array<chunksize=(720, 2), meta=np.ndarray>
      Array Chunk
      Bytes 5.76 kB 5.76 kB
      Shape (720, 2) (720, 2)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2 720
    • lon
      (lon)
      float32
      -179.875 -179.625 ... 179.875
      array([-179.875, -179.625, -179.375, ...,  179.375,  179.625,  179.875],
            dtype=float32)
    • lon_bnds
      (lon, bnds)
      float32
      dask.array<chunksize=(1440, 2), meta=np.ndarray>
      Array Chunk
      Bytes 11.52 kB 11.52 kB
      Shape (1440, 2) (1440, 2)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2 1440
    • time
      (time)
      datetime64[ns]
      1980-01-05 ... 2016-12-30
      bounds :
      time_bnds
      long_name :
      time
      standard_name :
      time
      array(['1980-01-05T00:00:00.000000000', '1980-01-13T00:00:00.000000000',
             '1980-01-21T00:00:00.000000000', ..., '2016-12-14T00:00:00.000000000',
             '2016-12-22T00:00:00.000000000', '2016-12-30T00:00:00.000000000'],
            dtype='datetime64[ns]')
    • time_bnds
      (time, bnds)
      datetime64[ns]
      dask.array<chunksize=(1702, 2), meta=np.ndarray>
      Array Chunk
      Bytes 27.23 kB 27.23 kB
      Shape (1702, 2) (1702, 2)
      Count 2 Tasks 1 Chunks
      Type datetime64[ns] numpy.ndarray
      2 1702
    • Rg
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      2
      esa_cci_path :
      nan
      long_name :
      Downwelling shortwave radiation
      orig_attrs :
      {'long_name': 'Downwelling shortwave radiation', 'project_name': 'BESS', 'references': 'Ryu, Y.*, Jiang, C., Kobayashi, H., & Detto, M. (2018). MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sensing of Environment, 204, 812-825', 'source_name': 'surface_downwelling_shortwave_flux_in_air', 'standard_name': 'surface_downwelling_shortwave_flux_in_air', 'units': 'W m-2', 'url': 'http://environment.snu.ac.kr/bess_rad/'}
      orig_version :
      15.10.2017
      project_name :
      BESS
      time_coverage_end :
      2010-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-03-01
      units :
      W m-2
      url :
      http://environment.snu.ac.kr/bess_rad/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • aerosol_optical_thickness_1600
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      25
      esa_cci_path :
      /neodc/esacci/aerosol/data/AATSR_SU/L3/v4.21/DAILY/
      long_name :
      Aerosol optical thickness at 1600 nm
      orig_attrs :
      {'Conventions': 'CF-1.6', 'cdm_data_type': 'grid', 'coordinates': 'latitude longitude', 'creator_email': 'p.r.j.north@swansea.ac.uk, a.heckel@swansea.ac.uk', 'creator_name': 'Swansea University', 'creator_url': 'http:\\/\\/www.swan.ac.uk\\/staff\\/academic\\/environmentsociety\\/geography\\/northpeter\\/', 'date_created': '20151022T231808Z', 'geospatial_lat_max': '90.0', 'geospatial_lat_min': '-90.0', 'geospatial_lat_resolution': '1.0', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': '180.0', 'geospatial_lon_min': '-180.0', 'geospatial_lon_resolution': '1.0', 'geospatial_lon_units': 'degrees_east', 'history': 'Level 3 product from Swansea algorithm', 'id': '20020724141127-ESACCI-L3C_AEROSOL-AER_PRODUCTS-AATSR_ENVISAT-SU_DAILY-v4.21.nc', 'inputfilelist': 'ATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1', 'keywords': 'satellite,observation,atmosphere', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'lat': 180, 'license': 'ESA CCI Data Policy: free and open access', 'lon': 360, 'long_name': 'aerosol optical thickness at 1600 nm', 'naming_authority': 'uk.ac.su.aatsraerosol', 'orig_attrs': {}, 'platform': 'ENVISAT', 'product_version': '4.21', 'project': 'Climate Change Initiative - European Space Agency', 'projection': 'equirectangular', 'references': 'http:\\/\\/www.esa-aerosol-cci.org', 'resolution': '1x1 degrees', 'sensor': 'AATSR', 'source': 'ATS_TOA_1P, V6.05', 'source_name': 'AAOD550_mean', 'standard_name': 'atmosphere_optical_thickness_due_to_ambient_aerosol', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains the level-3 daily mean aerosol properties products from AATSR satellite observations. Data are processed by Swansea algorithm', 'time': '1', 'time_coverage_end': '20020724T233825Z', 'time_coverage_start': '20020724T143513Z', 'title': 'AARDVARC CCI aerosol product level 3', 'tracking_id': 'a63f9cd2-1fed-4f9a-82fd-91f1c1b966b2', 'units': '1'}
      orig_version :
      v4.21
      project_name :
      ESA Aerosol CCI
      time_coverage_end :
      2012-04-10
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2002-07-24
      units :
      1
      url :
      http://www.esa-aerosol-cci.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • aerosol_optical_thickness_550
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      26
      esa_cci_path :
      /neodc/esacci/aerosol/data/AATSR_SU/L3/v4.21/DAILY/
      long_name :
      Aerosol optical thickness at 550 nm
      orig_attrs :
      {'Conventions': 'CF-1.6', 'cdm_data_type': 'grid', 'coordinates': 'latitude longitude', 'creator_email': 'p.r.j.north@swansea.ac.uk, a.heckel@swansea.ac.uk', 'creator_name': 'Swansea University', 'creator_url': 'http:\\/\\/www.swan.ac.uk\\/staff\\/academic\\/environmentsociety\\/geography\\/northpeter\\/', 'date_created': '20151022T231808Z', 'geospatial_lat_max': '90.0', 'geospatial_lat_min': '-90.0', 'geospatial_lat_resolution': '1.0', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': '180.0', 'geospatial_lon_min': '-180.0', 'geospatial_lon_resolution': '1.0', 'geospatial_lon_units': 'degrees_east', 'history': 'Level 3 product from Swansea algorithm', 'id': '20020724141127-ESACCI-L3C_AEROSOL-AER_PRODUCTS-AATSR_ENVISAT-SU_DAILY-v4.21.nc', 'inputfilelist': 'ATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1', 'keywords': 'satellite,observation,atmosphere', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'lat': 180, 'license': 'ESA CCI Data Policy: free and open access', 'lon': 360, 'long_name': 'aerosol optical thickness at 550 nm', 'naming_authority': 'uk.ac.su.aatsraerosol', 'orig_attrs': {}, 'platform': 'ENVISAT', 'product_version': '4.21', 'project': 'Climate Change Initiative - European Space Agency', 'projection': 'equirectangular', 'references': 'http:\\/\\/www.esa-aerosol-cci.org', 'resolution': '1x1 degrees', 'sensor': 'AATSR', 'source': 'ATS_TOA_1P, V6.05', 'source_name': 'AAOD550_mean', 'standard_name': 'atmosphere_optical_thickness_due_to_ambient_aerosol', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains the level-3 daily mean aerosol properties products from AATSR satellite observations. Data are processed by Swansea algorithm', 'time': '1', 'time_coverage_end': '20020724T233825Z', 'time_coverage_start': '20020724T143513Z', 'title': 'AARDVARC CCI aerosol product level 3', 'tracking_id': 'a63f9cd2-1fed-4f9a-82fd-91f1c1b966b2', 'units': '1'}
      orig_version :
      v4.21
      project_name :
      ESA Aerosol CCI
      time_coverage_end :
      2012-04-10
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2002-07-24
      units :
      1
      url :
      http://www.esa-aerosol-cci.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • aerosol_optical_thickness_670
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      27
      esa_cci_path :
      /neodc/esacci/aerosol/data/AATSR_SU/L3/v4.21/DAILY/
      long_name :
      Aerosol optical thickness at 670 nm
      orig_attrs :
      {'Conventions': 'CF-1.6', 'cdm_data_type': 'grid', 'coordinates': 'latitude longitude', 'creator_email': 'p.r.j.north@swansea.ac.uk, a.heckel@swansea.ac.uk', 'creator_name': 'Swansea University', 'creator_url': 'http:\\/\\/www.swan.ac.uk\\/staff\\/academic\\/environmentsociety\\/geography\\/northpeter\\/', 'date_created': '20151022T231808Z', 'geospatial_lat_max': '90.0', 'geospatial_lat_min': '-90.0', 'geospatial_lat_resolution': '1.0', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': '180.0', 'geospatial_lon_min': '-180.0', 'geospatial_lon_resolution': '1.0', 'geospatial_lon_units': 'degrees_east', 'history': 'Level 3 product from Swansea algorithm', 'id': '20020724141127-ESACCI-L3C_AEROSOL-AER_PRODUCTS-AATSR_ENVISAT-SU_DAILY-v4.21.nc', 'inputfilelist': 'ATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1', 'keywords': 'satellite,observation,atmosphere', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'lat': 180, 'license': 'ESA CCI Data Policy: free and open access', 'lon': 360, 'long_name': 'aerosol optical thickness at 670 nm', 'naming_authority': 'uk.ac.su.aatsraerosol', 'orig_attrs': {}, 'platform': 'ENVISAT', 'product_version': '4.21', 'project': 'Climate Change Initiative - European Space Agency', 'projection': 'equirectangular', 'references': 'http:\\/\\/www.esa-aerosol-cci.org', 'resolution': '1x1 degrees', 'sensor': 'AATSR', 'source': 'ATS_TOA_1P, V6.05', 'source_name': 'AAOD550_mean', 'standard_name': 'atmosphere_optical_thickness_due_to_ambient_aerosol', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains the level-3 daily mean aerosol properties products from AATSR satellite observations. Data are processed by Swansea algorithm', 'time': '1', 'time_coverage_end': '20020724T233825Z', 'time_coverage_start': '20020724T143513Z', 'title': 'AARDVARC CCI aerosol product level 3', 'tracking_id': 'a63f9cd2-1fed-4f9a-82fd-91f1c1b966b2', 'units': '1'}
      orig_version :
      v4.21
      project_name :
      ESA Aerosol CCI
      time_coverage_end :
      2012-04-10
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2002-07-24
      units :
      1
      url :
      http://www.esa-aerosol-cci.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • aerosol_optical_thickness_870
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      28
      esa_cci_path :
      /neodc/esacci/aerosol/data/AATSR_SU/L3/v4.21/DAILY/
      long_name :
      Aerosol optical thickness at 870 nm
      orig_attrs :
      {'Conventions': 'CF-1.6', 'cdm_data_type': 'grid', 'coordinates': 'latitude longitude', 'creator_email': 'p.r.j.north@swansea.ac.uk, a.heckel@swansea.ac.uk', 'creator_name': 'Swansea University', 'creator_url': 'http:\\/\\/www.swan.ac.uk\\/staff\\/academic\\/environmentsociety\\/geography\\/northpeter\\/', 'date_created': '20151022T231808Z', 'geospatial_lat_max': '90.0', 'geospatial_lat_min': '-90.0', 'geospatial_lat_resolution': '1.0', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': '180.0', 'geospatial_lon_min': '-180.0', 'geospatial_lon_resolution': '1.0', 'geospatial_lon_units': 'degrees_east', 'history': 'Level 3 product from Swansea algorithm', 'id': '20020724141127-ESACCI-L3C_AEROSOL-AER_PRODUCTS-AATSR_ENVISAT-SU_DAILY-v4.21.nc', 'inputfilelist': 'ATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1', 'keywords': 'satellite,observation,atmosphere', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'lat': 180, 'license': 'ESA CCI Data Policy: free and open access', 'lon': 360, 'long_name': 'aerosol optical thickness at 870 nm', 'naming_authority': 'uk.ac.su.aatsraerosol', 'orig_attrs': {}, 'platform': 'ENVISAT', 'product_version': '4.21', 'project': 'Climate Change Initiative - European Space Agency', 'projection': 'equirectangular', 'references': 'http:\\/\\/www.esa-aerosol-cci.org', 'resolution': '1x1 degrees', 'sensor': 'AATSR', 'source': 'ATS_TOA_1P, V6.05', 'source_name': 'AAOD550_mean', 'standard_name': 'atmosphere_optical_thickness_due_to_ambient_aerosol', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains the level-3 daily mean aerosol properties products from AATSR satellite observations. Data are processed by Swansea algorithm', 'time': '1', 'time_coverage_end': '20020724T233825Z', 'time_coverage_start': '20020724T143513Z', 'title': 'AARDVARC CCI aerosol product level 3', 'tracking_id': 'a63f9cd2-1fed-4f9a-82fd-91f1c1b966b2', 'units': '1'}
      orig_version :
      v4.21
      project_name :
      ESA Aerosol CCI
      time_coverage_end :
      2012-04-10
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2002-07-24
      units :
      1
      url :
      http://www.esa-aerosol-cci.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • air_temperature_2m
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      4
      esa_cci_path :
      nan
      long_name :
      2 Metre Air Temperature
      orig_attrs :
      {'comment': 'Air temperature at 2m from the ERA5 reanalysis product.', 'long_name': '2 metre air temperature', 'orig_attrs': {}, 'project_name': 'ERA5', 'references': '', 'source_name': 'air_temperature_2m', 'units': 'K', 'url': 'https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation'}
      orig_version :
      ERA5
      project_name :
      ERA5
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-05
      units :
      K
      url :
      https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • analysed_sst
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      44
      esa_cci_path :
      /neodc/esacci/sst/data/lt/Analysis/L4/v01.1/
      long_name :
      Analysed Sea Surface Temperature
      orig_attrs :
      {'Conventions': 'CF-1.5, Unidata Observation Dataset v1.0', 'Metadata_Conventions': 'Unidata Dataset Discovery v1.0', 'acknowledgment': 'Funded by ESA', 'cdm_data_type': 'grid', 'comment': 'WARNING Some applications are unable to properly handle signed byte values. If values are encountered > 127, please subtract 256 from this reported value', 'creator_email': 'science.leader@esa-sst-cci.org', 'creator_name': 'ESA SST CCI', 'creator_processing_institution': 'These data were produced at the Met Office as part of the ESA SST CCI project.', 'creator_url': 'http://www.esa-sst-cci.org', 'date_created': '20130309T132046Z', 'easternmost_longitude': 180.00001525878906, 'file_quality_level': 3, 'gds_version_id': '2.0', 'geospatial_lat_max': 90.0, 'geospatial_lat_min': -90.0, 'geospatial_lat_resolution': 0.05000000074505806, 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 180.0, 'geospatial_lon_min': -180.0, 'geospatial_lon_resolution': 0.05000000074505806, 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': -0.20000000298023224, 'geospatial_vertical_min': -0.20000000298023224, 'history': 'Created using OSTIA reanalysis system v2.0', 'id': 'OSTIA-ESACCI-L4-v01.1', 'institution': 'ESACCI', 'keywords': 'Oceans > Ocean Temperature > Sea Surface Temperature', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'license': 'GHRSST protocol describes data use as free and open', 'long_name': 'analysed sea surface temperature', 'metadata_link': 'http://www.esa-cci.org', 'naming_authority': 'org.ghrsst', 'netcdf_version_id': '4.1.3', 'northernmost_latitude': 90.0, 'orig_attrs': {}, 'platform': 'ERS-<1,2>, Envisat, NOAA-<12,14,15,16,17,18>, MetOpA', 'processing_level': 'L4', 'product_version': '1.1', 'project': 'Climate Change Initiative - European Space Agency', 'publisher_email': 'science.leader@esa-sst-cci.org', 'publisher_name': 'ESACCI', 'publisher_url': 'http://www.esa-sst-cci.org', 'references': 'http://www.esa-sst-cci.org', 'sensor': 'ATSR, AATSR, AVHRR_GAC', 'source': 'ATSR<1,2>-ESACCI-L3U-v1.0, AATSR-ESACCI-L3U-v1.0, AVHRR<12,14,15,16,17,18>_G-ESACCI-L2P-v1.0, AVHRRMTA-ESACCI-L2P-v1.0, EUMETSAT_OSI-SAF-ICE-v1.1, EUMETSAT_OSI-SAF-ICE-v2.2', 'source_dir': '/neodc/esacci/sst/data/lt/Analysis/L4/v01.1', 'source_name': 'analysed_sst', 'source_version': 'v01.1', 'southernmost_latitude': -90.0, 'spatial_resolution': '0.05 degree', 'standard_name': 'sea_water_temperature', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention', 'start_time': '20100101T000000Z', 'stop_time': '20100101T235959Z', 'summary': 'OSTIA L4 product from the ESA SST CCI project, produced using OSTIA reanalysis system v2.0. Ice field corrected in v1.1 (v1.0 had ice from day-1). Static ice field between 20080101-20080229 and 20080501-20080521 also fixed in v1.1', 'time_coverage_duration': 'P1D', 'time_coverage_end': '20100101T235959Z', 'time_coverage_resolution': 'P1D', 'time_coverage_start': '20100101T000000Z', 'title': 'ESA SST CCI OSTIA L4 product', 'tracking_id': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'units': 'kelvin', 'url': 'http://www.esa-sst-cci.org', 'uuid': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'valid_max': 4500.0, 'valid_min': -300.0, 'westernmost_longitude': -180.0}
      orig_version :
      v01.1
      project_name :
      ESA Sea Surface Temperature Climate Change Initiative (ESA SST CCI)
      time_coverage_end :
      2010-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1991-09-02
      units :
      kelvin
      url :
      http://www.esa-sst-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • bare_soil_evaporation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      55
      esa_cci_path :
      nan
      long_name :
      Bare Soil Evaporation
      orig_attrs :
      {'long_name': 'Bare Soil Evaporation', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Eb', 'standard_name': 'bare_soil_water_evaporation_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      units :
      mm/day
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • black_sky_albedo
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      65
      esa_cci_path :
      nan
      long_name :
      Black Sky Albedo for Visible Wavebands
      orig_attrs :
      {'comment': 'Black sky albedo derived from the GlobAlbedo CCI project dataset', 'long_name': 'Black Sky Albedo for Visible Wavebands', 'orig_attrs': {}, 'project_name': 'GlobAlbedo', 'references': 'Muller, Jan-Peter, et al. "The ESA GLOBALBEDO project for mapping the Earth’s land surface albedo for 15 years from European sensors." Geophysical Research Abstracts. Vol. 13. 2012.', 'source_name': 'DHR_VIS', 'standard_name': 'surface_albedo_black_sky', 'units': '-', 'url': 'http://www.globalbedo.org/'}
      orig_version :
      nan
      project_name :
      GlobAlbedo
      time_coverage_end :
      2012-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1998-01-05
      units :
      -
      url :
      http://www.globalbedo.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • black_sky_albedo_avhrr
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      76
      esa_cci_path :
      nan
      long_name :
      Directional Hemisphere Reflectance albedo - VIS band
      orig_attrs :
      {'comment': 'Black sky albedo derived from the QA4ECV Albedo Product', 'long_name': 'Directional Hemisphere Reflectance albedo - VIS band', 'orig_attrs': {}, 'project_name': 'QA4ECV - European Union Framework Program 7', 'source_name': 'DHR_VIS', 'standard_name': 'surface_albedo_black_sky', 'units': '1', 'url': 'http://www.qa4ecv.eu/'}
      orig_version :
      nan
      project_name :
      QA4ECV - European Union Framework Program 7
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1982-01-05
      units :
      1
      url :
      http://www.qa4ecv.eu/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • burnt_area
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      54
      esa_cci_path :
      nan
      long_name :
      Monthly Burnt Area
      orig_attrs :
      {'comment': 'Burnt Area based on the GFED4 fire product.', 'long_name': 'Monthly Burnt Area', 'orig_attrs': {}, 'project_name': 'GFED4', 'references': 'Giglio, Louis, James T. Randerson, and Guido R. Werf. "Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4)." Journal of Geophysical Research: Biogeosciences 118.1 (2013): 317-328.', 'source_name': 'BurntArea', 'standard_name': 'burnt_area', 'units': 'hectares', 'url': 'http://www.globalfiredata.org/'}
      orig_version :
      gfed4
      project_name :
      GFED4
      time_coverage_end :
      2014-03-02
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1995-01-05
      units :
      hectares
      url :
      http://www.globalfiredata.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • c_emissions
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      53
      esa_cci_path :
      nan
      long_name :
      Carbon Dioxide Emissions Due to Natural Fires
      orig_attrs :
      {'comment': 'Carbon emissions by fires based on the GFED4 fire product.', 'long_name': 'Carbon dioxide emissions due to natural fires expressed as carbon flux.', 'orig_attrs': {}, 'project_name': 'GFED4', 'references': 'Giglio, Louis, James T. Randerson, and Guido R. Werf. "Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4)." Journal of Geophysical Research: Biogeosciences 118.1 (2013): 317-328.', 'source_name': 'Emission', 'standard_name': 'surface_upward_mass_flux_of_carbon_dioxide_expressed_as_carbon_due_to_emission_from_fires', 'units': 'g C m-2 month-1', 'url': 'http://www.globalfiredata.org/'}
      orig_version :
      gfed4
      project_name :
      GFED4
      time_coverage_end :
      2010-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      units :
      g C m-2 month-1
      url :
      http://www.globalfiredata.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • cee
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      30
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Effective Emissivity at 10.8 um
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud effective emissivity at 10.8 um', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cee', 'spatial_resolution': '0.50 degree', 'standard_name': 'cee', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': '1', 'url': 'http://www.dwd.de', 'valid_max': 1.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      units :
      1
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • cer
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      31
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Effective Radius
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud effective radius', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cer', 'spatial_resolution': '0.50 degree', 'standard_name': 'cer', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'um', 'url': 'http://www.dwd.de', 'valid_max': 200.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      units :
      um
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • cfc
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      32
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud fraction
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud fraction', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cfc', 'spatial_resolution': '0.50 degree', 'standard_name': 'cfc', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': '1', 'url': 'http://www.dwd.de', 'valid_max': 1.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      units :
      1
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • chlor_a
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      29
      esa_cci_path :
      /neodc/esacci/ocean_colour/data/v3.1-release/geographic/netcdf/chlor_a/daily/v3.1
      long_name :
      Chlorophyll-a Concentration in Seawater
      orig_attrs :
      {'Conventions': 'CF-1.6', 'Metadata_Conventions': 'Unidata Dataset Discovery v1.0', 'ancillary_variables': 'chlor_a_log10_rmsd chlor_a_log10_bias', 'cdm_data_type': 'Grid', 'comment': 'See summary attribute', 'creation_date': '20160822T065128Z', 'creator_email': 'help@esa-oceancolour-cci.org', 'creator_name': 'Plymouth Marine Laboratory', 'creator_url': 'http://esa-oceancolour-cci.org', 'date_created': '20160822T065128Z', 'geospatial_lat_max': 90.0, 'geospatial_lat_min': -90.0, 'geospatial_lat_resolution': '.04166666666666666666', 'geospatial_lat_units': 'decimal degrees north', 'geospatial_lon_max': 180.0, 'geospatial_lon_min': -180.0, 'geospatial_lon_resolution': '.04166666666666666666', 'geospatial_lon_units': 'decimal degrees east', 'geospatial_vertical_max': 0.0, 'geospatial_vertical_min': 0.0, 'grid_mapping': 'crs', 'history': 'Source data were: NASA OBPG SeaWiFS level2 R2014.0 LAC and GAC [A/C via l2gen], NASA OBPG VIIRS L2 R2014.0.1 (identical to R2014.0.2) [A/C via l2gen], NASA OBPG MODIS Aqua level 1A [A/C: l2gen equivalent to R2014.0.1 + Polymer 3.5] and ESA MERIS L1B (3rd reprocessing inc OCL correction) [Polymer v3.5]; Derived products were mainly produced with functions validated from the current NASA SeaDAS release and some custom implementations. Uncertainty generation determined by the fuzzy classifier scheme of Tim Moore (2009) and Thomas Jackson et al (2017)', 'id': 'ESACCI-OC-L3S-CHLOR_A-MERGED-1D_DAILY_4km_GEO_PML_OCx-20120101-fv3.1.nc', 'institution': 'Plymouth Marine Laboratory', 'keywords': 'satellite,observation,ocean,ocean colour', 'keywords_vocabulary': 'none', 'license': 'ESA CCI Data Policy: free and open access. When referencing, please use: Ocean Colour Climate Change Initiative dataset, Version <Version Number>, European Space Agency, available online at http://www.esa-oceancolour-cci.org. We would also appreciate being notified of publications so that we can list them on the project website at http://www.esa-oceancolour-cci.org/?q=publications', 'long_name': "Chlorophyll-a concentration in seawater (not log-transformed), generated by SeaDAS using a blended combination of OCI (OC4v6 + Hu's CI), OC3 and OC5, depending on water class memberships", 'naming_authority': 'uk.ac.pml', 'netcdf_file_type': 'NETCDF4_CLASSIC', 'number_of_optical_water_types': '14', 'orig_attrs': {}, 'parameter_vocab_uri': 'http://vocab.nerc.ac.uk/collection/P04/current/', 'platform': 'Orbview-2,Aqua,Envisat,Suomi-NPP', 'processing_level': 'Level-3', 'product_version': '3.1', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-oceancolour-cci.org/', 'sensor': 'SeaWiFS,MODIS,MERIS,VIIRS', 'source': 'NASA SeaWiFS L2 R2014.0 LAC and GAC, MODIS-Aqua L1A, MERIS L1B 3rd reprocessing inc OCL corrections, NASA VIIRS L2 R2014.0.1 (data identical to R2014.0.2)', 'source_dir': '/neodc/esacci/ocean_colour/data/v3.1-release/geographic/netcdf/chlor_a/daily/v3.1/', 'source_name': 'chlor_a', 'source_version': 'v3.1', 'spatial_resolution': '4km nominal at equator', 'standard_name': 'mass_concentration_of_chlorophyll_a_in_sea_water', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Conventions Version 1.6', 'start_date': '01-JAN-2012 00:00:00.000000', 'stop_date': '01-JAN-2012 23:59:00.000000', 'summary': "Data products generated by the Ocean Colour component of the European Space Agency Climate Change Initiative project. These files are daily composites of merged sensor (MERIS, MODIS Aqua, SeaWiFS LAC & GAC, VIIRS) products. MODIS Aqua and MERIS were band-shifted and bias-corrected to SeaWiFS bands and values using a temporally and spatially varying scheme based on the overlap years of 2003-2007. VIIRS was band-shifted and bias-corrected in a second stage against the MODIS Rrs that had already been corrected to SeaWiFS levels, for the overlap period 2012-2013. VIIRS and SeaWiFS Rrs were derived from standard NASA L2 products; MERIS and MODIS from a combination of NASA's l2gen (for basic sensor geometry corrections, etc) and HYGEOS Polymer v3.5 (for atmospheric correction). The Rrs were binned to a sinusoidal 4km level-3 grid, and later to 4km geographic projection, by Brockmann Consult's BEAM. Derived products were generally computed with the standard SeaDAS algorithms. QAA IOPs were derived using the standard SeaDAS algorithm but with a modified backscattering table to match that used in the bandshifting. The final chlorophyll is a combination of OC4, Hu's CI and OC5, depending on the water class memberships. Uncertainty estimates were added using the fuzzy water classifier and uncertainty estimation algorithm of Tim Moore as documented in Jackson et al (2017).", 'time_coverage_duration': 'P1D', 'time_coverage_end': '201201012359Z', 'time_coverage_resolution': 'P1D', 'time_coverage_start': '201201010000Z', 'title': 'ESA CCI Ocean Colour Product', 'tracking_id': '4e0985e0-f157-40f6-b0f1-0a2bb0261f12', 'units': 'milligram m-3', 'units_nonstandard': 'mg m^-3', 'url': 'http://esa-oceancolour-cci.org'}
      orig_version :
      v3.1
      project_name :
      ESA CCI Ocean Colour Product
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1997-09-02
      units :
      milligram m-3
      url :
      http://esa-oceancolour-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • cot
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      35
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Optical Thickness
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud optical thickness', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cot', 'spatial_resolution': '0.50 degree', 'standard_name': 'cot', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': '1', 'url': 'http://www.dwd.de', 'valid_max': 320.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      units :
      1
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • country_mask
      (time, lat, lon)
      float64
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      orig_attrs :
      {'ds_method': 'MODE', 'orig_attrs': {}, 'source_name': 'country_mask', 'standard_name': 'country_mask', 'units': '-'}
      units :
      -
      Array Chunk
      Bytes 14.12 GB 8.29 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float64 numpy.ndarray
      1440 720 1702
    • cph
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      39
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Fraction of Liquid Water Clouds
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'fraction of liquid water clouds', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cph', 'spatial_resolution': '0.50 degree', 'standard_name': 'cph', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': '1', 'url': 'http://www.dwd.de', 'valid_max': 1.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      units :
      1
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • cth
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      36
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Top Height
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud top height', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cth', 'spatial_resolution': '0.50 degree', 'standard_name': 'cth', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'km', 'url': 'http://www.dwd.de', 'valid_max': 20.0, 'valid_min': -1.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      units :
      km
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • ctp
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      37
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Top Pressure
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud top pressure', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'ctp', 'spatial_resolution': '0.50 degree', 'standard_name': 'ctp', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'hPa', 'url': 'http://www.dwd.de', 'valid_max': 1200.0, 'valid_min': 50.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      units :
      hPa
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • ctt
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      38
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Top Temperature
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud top temperature', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'ctt', 'spatial_resolution': '0.50 degree', 'standard_name': 'ctt', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'K', 'url': 'http://www.dwd.de', 'valid_max': 320.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      units :
      K
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • evaporation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      56
      esa_cci_path :
      nan
      long_name :
      Evaporation
      orig_attrs :
      {'long_name': 'Evaporation', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'E', 'standard_name': 'water_evaporation_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      units :
      mm/day
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • evaporative_stress
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      57
      esa_cci_path :
      nan
      long_name :
      Evaporative Stress Factor
      orig_attrs :
      {'long_name': 'Evaporative Stress Factor', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'S', 'standard_name': 'evaporative_stress_factor', 'units': '', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      units :
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • fapar_tip
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      74
      esa_cci_path :
      nan
      long_name :
      Fraction of Absorbed PAR
      orig_attrs :
      {'long_name': 'Fraction of Absorbed Photosynthetically Active Radiation', 'orig_attrs': {}, 'project_name': 'QA4ECV', 'source_name': 'fapar', 'standard_name': 'fapar', 'units': '1', 'url': 'http://www.qa4ecv.eu/'}
      orig_version :
      nan
      project_name :
      QA4ECV
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1982-01-05
      units :
      1
      url :
      http://www.qa4ecv.eu/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • fat_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      21
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column (Fixed Altitude)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on Fixed Altitude definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'fat_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • fat_p
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      17
      esa_cci_path :
      nan
      long_name :
      Tropopause Air Pressure for the Fixed Altitude Tropopause
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropopause_air_pressure for the Fixed Altitude Tropopause', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'fat_p', 'standard_name': 'tropopause_air_pressure', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'hPa', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      hPa
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • flt_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      19
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on Fixed Layers definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'flt_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • flt_p
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      18
      esa_cci_path :
      nan
      long_name :
      Tropopause Air Pressure for the Fixed Layer Tropopause
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropopause_air_pressure for the fixed layer tropopause', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'flt_p', 'standard_name': 'tropopause_air_pressure', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'hPa', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      hPa
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • fractional_snow_cover
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      68
      esa_cci_path :
      nan
      long_name :
      Surface Fraction Covered by Snow
      orig_attrs :
      {'comment': 'Grid cell fractional snow cover based on the Globsnow CCI product.', 'long_name': 'Surface fraction covered by snow.', 'orig_attrs': {}, 'project_name': 'GlobSnow', 'references': 'Luojus, Kari, et al. "ESA DUE Globsnow-Global Snow Database for Climate Research." ESA Special Publication. Vol. 686. 2010.', 'source_name': 'MFSC', 'standard_name': 'surface_snow_area_fraction', 'units': 'percent', 'url': 'http://www.globsnow.info/'}
      orig_version :
      v2.0
      project_name :
      GlobSnow
      time_coverage_end :
      2013-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      units :
      percent
      url :
      http://www.globsnow.info/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • free_fat_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      22
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column (Fixed Altitude)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on Fixed Altitude definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'free_fat_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • free_flt_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      23
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column (Fixed Layers)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on Fixed Layers definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'free_flt_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • free_lrt_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      20
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column ( Lapse Rate)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on lapse rate definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'free_lrt_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • free_msr_flt
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      8
      esa_cci_path :
      nan
      long_name :
      Residual MSR-FLT (Stratospheric Part Partial)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'residual MSR-FLT_stratospheric_part partial ozone column in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'free_msr_flt', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • free_msr_lrt
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      10
      esa_cci_path :
      nan
      long_name :
      Residual MSR-LRT (Stratospheric Part Partial)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'residual MSR-LRT_stratospheric_part partial ozone column in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'free_msr_lrt', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • gross_primary_productivity
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      47
      esa_cci_path :
      nan
      long_name :
      Gross Primary Productivity
      orig_attrs :
      {'comment': 'Gross Carbon uptake of of the ecosystem through photosynthesis', 'long_name': 'Gross Primary Productivity', 'orig_attrs': {}, 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'GPPall', 'standard_name': 'gross_primary_productivity_of_carbon', 'units': 'gC m-2 day-1', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2015-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      units :
      gC m-2 day-1
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • interception_loss
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      58
      esa_cci_path :
      nan
      long_name :
      Interception Loss
      orig_attrs :
      {'long_name': 'Interception Loss', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Ei', 'standard_name': 'interception_loss', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      units :
      mm/day
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • iwp
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      33
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Ice Water Path
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud ice water path', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'iwp', 'spatial_resolution': '0.50 degree', 'standard_name': 'iwp', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'g/m2', 'url': 'http://www.dwd.de', 'valid_max': 32000.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      units :
      g/m2
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • land_surface_temperature
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      69
      esa_cci_path :
      nan
      long_name :
      Land Surface Temperature
      orig_attrs :
      {'comment': 'Advanced Along Track Scanning Radiometer pixel land surface temperature product', 'long_name': 'Land Surface Temperature', 'orig_attrs': {}, 'project_name': 'GlobTemperature', 'references': 'Jiménez, C., et al. "Inversion of AMSR‐E observations for land surface temperature estimation: 1. Methodology and evaluation with station temperature." Journal of Geophysical Research: Atmospheres 122.6 (2017): 3330-3347.', 'source_name': 'LST', 'standard_name': 'surface_temperature', 'units': 'K', 'url': 'http://data.globtemperature.info/'}
      orig_version :
      nan
      project_name :
      GlobTemperature
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2002-05-21
      units :
      K
      url :
      http://data.globtemperature.info/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • latent_energy
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      48
      esa_cci_path :
      nan
      long_name :
      Latent Energy
      orig_attrs :
      {'comment': 'Latent heat flux from the surface.', 'long_name': 'Latent Energy', 'orig_attrs': {}, 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'LE', 'standard_name': 'surface_upward_latent_heat_flux', 'units': 'W m-2', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2015-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      units :
      W m-2
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • leaf_area_index
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      73
      esa_cci_path :
      nan
      long_name :
      Effective Leaf Area Index
      orig_attrs :
      {'long_name': 'Effective Leaf Area Index', 'orig_attrs': {}, 'project_name': 'QA4ECV', 'source_name': 'Lai', 'standard_name': 'leaf_area_index', 'units': '1', 'url': 'http://www.qa4ecv.eu/'}
      orig_version :
      nan
      project_name :
      QA4ECV
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1982-01-05
      units :
      1
      url :
      http://www.qa4ecv.eu/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • lrt_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      24
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column (Lapse Rate)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on lapse rate definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'lrt_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • lrt_p
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      16
      esa_cci_path :
      nan
      long_name :
      Tropopause Air Pressure (Lapse Rate)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropopause_air_pressure for the lapse rate tropopause', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'lrt_p', 'standard_name': 'tropopause_air_pressure', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'hPa', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      hPa
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • lwp
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      34
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Liquid Water Path
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud liquid water path', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'lwp', 'spatial_resolution': '0.50 degree', 'standard_name': 'lwp', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'g/m2', 'url': 'http://www.dwd.de', 'valid_max': 32000.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      units :
      g/m2
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • mask
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      46
      esa_cci_path :
      /neodc/esacci/sst/data/lt/Analysis/L4/v01.1/
      long_name :
      Sea/Land/Lake/Ice Field Composite Mask
      orig_attrs :
      {'Conventions': 'CF-1.5, Unidata Observation Dataset v1.0', 'Metadata_Conventions': 'Unidata Dataset Discovery v1.0', 'acknowledgment': 'Funded by ESA', 'cdm_data_type': 'grid', 'comment': 'WARNING Some applications are unable to properly handle signed byte values. If values are encountered > 127, please subtract 256 from this reported value', 'creator_email': 'science.leader@esa-sst-cci.org', 'creator_name': 'ESA SST CCI', 'creator_processing_institution': 'These data were produced at the Met Office as part of the ESA SST CCI project.', 'creator_url': 'http://www.esa-sst-cci.org', 'date_created': '20130309T132046Z', 'easternmost_longitude': 180.00001525878906, 'file_quality_level': 3, 'gds_version_id': '2.0', 'geospatial_lat_max': 90.0, 'geospatial_lat_min': -90.0, 'geospatial_lat_resolution': 0.05000000074505806, 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 180.0, 'geospatial_lon_min': -180.0, 'geospatial_lon_resolution': 0.05000000074505806, 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': -0.20000000298023224, 'geospatial_vertical_min': -0.20000000298023224, 'history': 'Created using OSTIA reanalysis system v2.0', 'id': 'OSTIA-ESACCI-L4-v01.1', 'institution': 'ESACCI', 'keywords': 'Oceans > Ocean Temperature > Sea Surface Temperature', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'license': 'GHRSST protocol describes data use as free and open', 'long_name': 'sea/land/lake/ice field composite mask', 'metadata_link': 'http://www.esa-cci.org', 'naming_authority': 'org.ghrsst', 'netcdf_version_id': '4.1.3', 'northernmost_latitude': 90.0, 'orig_attrs': {}, 'platform': 'ERS-<1,2>, Envisat, NOAA-<12,14,15,16,17,18>, MetOpA', 'processing_level': 'L4', 'product_version': '1.1', 'project': 'Climate Change Initiative - European Space Agency', 'publisher_email': 'science.leader@esa-sst-cci.org', 'publisher_name': 'ESACCI', 'publisher_url': 'http://www.esa-sst-cci.org', 'references': 'http://www.esa-sst-cci.org', 'sensor': 'ATSR, AATSR, AVHRR_GAC', 'source': 'ATSR<1,2>-ESACCI-L3U-v1.0, AATSR-ESACCI-L3U-v1.0, AVHRR<12,14,15,16,17,18>_G-ESACCI-L2P-v1.0, AVHRRMTA-ESACCI-L2P-v1.0, EUMETSAT_OSI-SAF-ICE-v1.1, EUMETSAT_OSI-SAF-ICE-v2.2', 'source_dir': '/neodc/esacci/sst/data/lt/Analysis/L4/v01.1', 'source_name': 'mask', 'source_version': 'v01.1', 'southernmost_latitude': -90.0, 'spatial_resolution': '0.05 degree', 'standard_name': 'mask', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention', 'start_time': '20100101T000000Z', 'stop_time': '20100101T235959Z', 'summary': 'OSTIA L4 product from the ESA SST CCI project, produced using OSTIA reanalysis system v2.0. Ice field corrected in v1.1 (v1.0 had ice from day-1). Static ice field between 20080101-20080229 and 20080501-20080521 also fixed in v1.1', 'time_coverage_duration': 'P1D', 'time_coverage_end': '20100101T235959Z', 'time_coverage_resolution': 'P1D', 'time_coverage_start': '20100101T000000Z', 'title': 'ESA SST CCI OSTIA L4 product', 'tracking_id': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'url': 'http://www.esa-sst-cci.org', 'uuid': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'valid_max': 31.0, 'valid_min': 1.0, 'westernmost_longitude': -180.0}
      orig_version :
      v01.1
      project_name :
      ESA Sea Surface Temperature Climate Change Initiative (ESA SST CCI)
      time_coverage_end :
      2010-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1991-09-02
      url :
      http://www.esa-sst-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • max_air_temperature_2m
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      6
      esa_cci_path :
      nan
      long_name :
      Maximum 2 Metre Air Temperature
      orig_attrs :
      {'comment': 'Air temperature at 2m from the ERA5 reanalysis product.', 'long_name': 'Maximum 2 metre air temperature', 'orig_attrs': {}, 'project_name': 'ERA5', 'references': '', 'source_name': 'max_air_temperature_2m', 'units': 'K', 'url': 'https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation'}
      orig_version :
      ERA5
      project_name :
      ERA5
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-05
      units :
      K
      url :
      https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • min_air_temperature_2m
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      7
      esa_cci_path :
      nan
      long_name :
      Minimum 2 Metre Air Temperature
      orig_attrs :
      {'comment': 'Air temperature at 2m from the ERA5 reanalysis product.', 'long_name': 'Minimum 2 metre air temperature', 'orig_attrs': {}, 'project_name': 'ERA5', 'references': '', 'source_name': 'min_air_temperature_2m', 'units': 'K', 'url': 'https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation'}
      orig_version :
      ERA5
      project_name :
      ERA5
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-05
      units :
      K
      url :
      https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • msr_flt
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      9
      esa_cci_path :
      nan
      long_name :
      Residual MSR-FLT (Stratospheric Part Partial)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'residual MSR-FLT_stratospheric_part partial ozone column in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'msr_flt', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • msr_lrt
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      11
      esa_cci_path :
      nan
      long_name :
      Residual MSR-LRT (Stratospheric Part Partial)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'residual MSR-LRT_stratospheric_part partial ozone column in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'msr_lrt', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • net_ecosystem_exchange
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      49
      esa_cci_path :
      nan
      long_name :
      Net Ecosystem Exchange
      orig_attrs :
      {'comment': 'Net carbon exchange between the ecosystem and the atmopshere.', 'long_name': 'Net Ecosystem Exchange', 'orig_attrs': {}, 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'NEE', 'standard_name': 'net_primary_productivity_of_carbon', 'units': 'gC m-2 day-1', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2015-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      units :
      gC m-2 day-1
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • net_radiation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      50
      esa_cci_path :
      nan
      long_name :
      Net Radiation
      orig_attrs :
      {'comment': 'Net radiation to the surface', 'long_name': 'Net Radiation', 'orig_attrs': {}, 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'Rn', 'standard_name': 'surface_net_radiation_flux', 'units': 'W m-2', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2015-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      units :
      W m-2
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • open_water_evaporation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      59
      esa_cci_path :
      nan
      long_name :
      Open-Water Evaporation
      orig_attrs :
      {'long_name': 'Open-water Evaporation', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Ew', 'standard_name': 'water_evaporation_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      units :
      mm/day
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • ozone
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      72
      esa_cci_path :
      /neodc/esacci/ozone/data/total_columns/l3/merged/v0100/
      long_name :
      Mean Total Ozone Column in dobson units
      orig_attrs :
      {'comment': 'Atmospheric ozone based on the Ozone CCI data.', 'long_name': 'Mean total ozone column in dobson units', 'orig_attrs': {}, 'project_name': 'Ozone CCI', 'references': 'Laeng, A., et al. "The ozone climate change initiative: Comparison of four Level-2 processors for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)." Remote Sensing of Environment 162 (2015): 316-343.', 'source_name': 'atmosphere_mole_content_of_ozone', 'standard_name': 'atmosphere_mole_content_of_ozone', 'units': 'DU', 'url': 'http://www.esa-ozone-cci.org/'}
      orig_version :
      v0100
      project_name :
      Ozone CCI
      time_coverage_end :
      2011-06-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1996-03-09
      units :
      DU
      url :
      http://www.esa-ozone-cci.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • par
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      3
      esa_cci_path :
      nan
      long_name :
      Photosynthetically Active Radiation
      orig_attrs :
      {'long_name': 'Photosynthetically active radiation', 'orig_attrs': {}, 'project_name': 'BESS', 'references': 'Ryu, Y.*, Jiang, C., Kobayashi, H., & Detto, M. (2018). MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sensing of Environment, 204, 812-825', 'source_name': 'surface_downwelling_photosynthetic_radiative_flux_in_air', 'standard_name': 'surface_downwelling_photosynthetic_radiative_flux_in_air', 'units': 'W m-2', 'url': 'http://environment.snu.ac.kr/bess_rad/'}
      orig_version :
      15.10.2017
      project_name :
      BESS
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-03-01
      units :
      W m-2
      url :
      http://environment.snu.ac.kr/bess_rad/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • pardiff
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      1
      esa_cci_path :
      nan
      long_name :
      Diffuse Photosynthetically Active Radiation
      orig_attrs :
      {'long_name': 'Diffuse Photosynthetically active radiation', 'orig_attrs': {}, 'project_name': 'BESS', 'references': 'Ryu, Y.*, Jiang, C., Kobayashi, H., & Detto, M. (2018). MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sensing of Environment, 204, 812-825', 'source_name': 'surface_diffuse_downwelling_photosynthetic_radiative_flux_in_air', 'standard_name': 'surface_diffuse_downwelling_photosynthetic_radiative_flux_in_air', 'units': 'W m-2', 'url': 'http://environment.snu.ac.kr/bess_rad/'}
      orig_version :
      15.10.2017
      project_name :
      BESS
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-03-01
      units :
      W m-2
      url :
      http://environment.snu.ac.kr/bess_rad/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • potential_evaporation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      60
      esa_cci_path :
      nan
      long_name :
      Potential Evaporation
      orig_attrs :
      {'long_name': 'Potential Evaporation', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Ep', 'standard_name': 'potential_water_evaporation_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      units :
      mm/day
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • precipitation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      71
      esa_cci_path :
      nan
      long_name :
      Precipitation
      orig_attrs :
      {'comment': 'Precipitation based on the GPCP dataset.', 'long_name': 'Precip - RealTime [RT] (see documentation for more information)', 'orig_attrs': {}, 'project_name': 'GPCP', 'references': 'Adler, Robert F., et al. "The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present)." Journal of hydrometeorology 4.6 (2003): 1147-1167.', 'source_name': 'Precip', 'standard_name': 'precipitation_flux', 'units': 'mm/day', 'url': 'http://precip.gsfc.nasa.gov/'}
      orig_version :
      nan
      project_name :
      GPCP
      time_coverage_end :
      2015-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1980-01-05
      units :
      mm/day
      url :
      http://precip.gsfc.nasa.gov/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • precipitation_era5
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      5
      esa_cci_path :
      nan
      long_name :
      ERA5 Precipitation
      orig_attrs :
      {'comment': 'Total precipitation from the ERA5 reanalysis product.', 'long_name': 'ERA 5 Precipitation', 'orig_attrs': {}, 'project_name': 'ERA5', 'references': '', 'source_name': 'precipitation', 'units': 'K', 'url': 'https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation'}
      orig_version :
      ERA5
      project_name :
      ERA5
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-05
      units :
      K
      url :
      https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • psurf
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      12
      esa_cci_path :
      nan
      long_name :
      Surface Air Pressure
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'surface_air_pressure', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'psurf', 'standard_name': 'surface_air_pressure', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'hPa', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      hPa
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • root_moisture
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      61
      esa_cci_path :
      nan
      long_name :
      Root-Zone Soil Moisture
      orig_attrs :
      {'long_name': 'Root-Zone Soil Moisture', 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'SMroot', 'standard_name': 'soil_moisture_content', 'units': 'm3/m3', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      units :
      m3/m3
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • sea_ice_fraction
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      45
      esa_cci_path :
      /neodc/esacci/sst/data/lt/Analysis/L4/v01.1/
      long_name :
      Sea Ice Area Fraction
      orig_attrs :
      {'Conventions': 'CF-1.5, Unidata Observation Dataset v1.0', 'Metadata_Conventions': 'Unidata Dataset Discovery v1.0', 'acknowledgment': 'Funded by ESA', 'cdm_data_type': 'grid', 'comment': 'WARNING Some applications are unable to properly handle signed byte values. If values are encountered > 127, please subtract 256 from this reported value', 'creator_email': 'science.leader@esa-sst-cci.org', 'creator_name': 'ESA SST CCI', 'creator_processing_institution': 'These data were produced at the Met Office as part of the ESA SST CCI project.', 'creator_url': 'http://www.esa-sst-cci.org', 'date_created': '20130309T132046Z', 'easternmost_longitude': 180.00001525878906, 'file_quality_level': 3, 'gds_version_id': '2.0', 'geospatial_lat_max': 90.0, 'geospatial_lat_min': -90.0, 'geospatial_lat_resolution': 0.05000000074505806, 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 180.0, 'geospatial_lon_min': -180.0, 'geospatial_lon_resolution': 0.05000000074505806, 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': -0.20000000298023224, 'geospatial_vertical_min': -0.20000000298023224, 'history': 'Created using OSTIA reanalysis system v2.0', 'id': 'OSTIA-ESACCI-L4-v01.1', 'institution': 'ESACCI', 'keywords': 'Oceans > Ocean Temperature > Sea Surface Temperature', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'license': 'GHRSST protocol describes data use as free and open', 'long_name': 'sea ice area fraction', 'metadata_link': 'http://www.esa-cci.org', 'naming_authority': 'org.ghrsst', 'netcdf_version_id': '4.1.3', 'northernmost_latitude': 90.0, 'platform': 'ERS-<1,2>, Envisat, NOAA-<12,14,15,16,17,18>, MetOpA', 'processing_level': 'L4', 'product_version': '1.1', 'project': 'Climate Change Initiative - European Space Agency', 'publisher_email': 'science.leader@esa-sst-cci.org', 'publisher_name': 'ESACCI', 'publisher_url': 'http://www.esa-sst-cci.org', 'references': 'http://www.esa-sst-cci.org', 'sensor': 'ATSR, AATSR, AVHRR_GAC', 'source': 'ATSR<1,2>-ESACCI-L3U-v1.0, AATSR-ESACCI-L3U-v1.0, AVHRR<12,14,15,16,17,18>_G-ESACCI-L2P-v1.0, AVHRRMTA-ESACCI-L2P-v1.0, EUMETSAT_OSI-SAF-ICE-v1.1, EUMETSAT_OSI-SAF-ICE-v2.2', 'source_dir': '/neodc/esacci/sst/data/lt/Analysis/L4/v01.1', 'source_name': 'sea_ice_fraction', 'source_version': 'v01.1', 'southernmost_latitude': -90.0, 'spatial_resolution': '0.05 degree', 'standard_name': 'sea_ice_area_fraction', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention', 'summary': 'OSTIA L4 product from the ESA SST CCI project, produced using OSTIA reanalysis system v2.0. Ice field corrected in v1.1 (v1.0 had ice from day-1). Static ice field between 20080101-20080229 and 20080501-20080521 also fixed in v1.1', 'time_coverage_duration': 'P1D', 'time_coverage_end': '20100101T235959Z', 'time_coverage_resolution': 'P1D', 'time_coverage_start': '20100101T000000Z', 'title': 'ESA SST CCI OSTIA L4 product', 'tracking_id': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'units': '1', 'url': 'http://www.esa-sst-cci.org', 'uuid': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'valid_max': 100.0, 'valid_min': 0.0, 'westernmost_longitude': -180.0}
      orig_version :
      v01.1
      project_name :
      ESA Sea Surface Temperature Climate Change Initiative (ESA SST CCI)
      time_coverage_end :
      2010-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1991-09-02
      units :
      1
      url :
      http://www.esa-sst-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • sensible_heat
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      51
      esa_cci_path :
      nan
      long_name :
      Sensible Heat
      orig_attrs :
      {'comment': 'Sensible heat flux from the surface', 'long_name': 'Sensible Heat', 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'H', 'standard_name': 'surface_upward_sensible_heat_flux', 'units': 'W m-2', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2015-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      units :
      W m-2
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • snow_sublimation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      62
      esa_cci_path :
      nan
      long_name :
      Snow Sublimation
      orig_attrs :
      {'long_name': 'Snow Sublimation', 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Es', 'standard_name': 'snow_sublimation_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      units :
      mm/day
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • snow_water_equivalent
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      67
      esa_cci_path :
      nan
      long_name :
      Daily Snow Water Equivalent
      orig_attrs :
      {'certain_values': '-2 == mountains, -1 == water bodies, 0 == either SWE, or missing data in the southern hemisphere', 'comment': 'Grid cell fractional snow cover based on the Globsnow CCI product.', 'long_name': 'Daily Snow Water Equivalent', 'project_name': 'GlobSnow', 'references': 'Luojus, Kari, et al. "ESA DUE Globsnow-Global Snow Database for Climate Research." ESA Special Publication. Vol. 686. 2010.', 'source_name': 'SWE', 'units': 'mm', 'url': 'http://www.globsnow.info/'}
      orig_version :
      v2.0
      project_name :
      GlobSnow
      time_coverage_end :
      2012-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1980-01-05
      units :
      mm
      url :
      http://www.globsnow.info/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • soil_moisture
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      78
      esa_cci_path :
      /neodc/esacci/soil_moisture/data/daily_files/COMBINED/v04.2/
      long_name :
      Soil Moisture
      orig_attrs :
      {'comment': 'Soil moisture based on the SOilmoisture CCI project', 'long_name': 'Soil Moisture', 'project_name': 'SoilMoisture CCI', 'references': 'Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A.M., Wagner, W., McCabe, M.F., Evans, J.P., and van Dijk, A.I.J.M. (2012): Trend-preserving blending of passive and active microwave soil moisture retrievals; Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A.M., Wagner, W., van Dijk, A.I.J.M., McCabe, M.F., & Evans, J.P. (2011): Developing an improved soil moisture dataset by blending passive and active microwave satellite based retrievals. Hydrology and Earth System Sciences, 15, 425-436.', 'source_name': 'SoilMoisture', 'standard_name': 'soil_moisture_content', 'units': 'm3', 'url': 'http://www.esa-soilmoisture-cci.org'}
      orig_version :
      v04.2
      project_name :
      SoilMoisture CCI
      time_coverage_end :
      2014-01-29
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1980-01-05
      units :
      m3
      url :
      http://www.esa-soilmoisture-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • srex_mask
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      77
      esa_cci_path :
      nan
      long_name :
      Mask for SREX Regions
      orig_attrs :
      {'ds_method': 'MODE', 'long_name': 'Mask for SREX regions', 'source_name': 'layer', 'standard_name': 'srex_mask', 'units': '-'}
      orig_version :
      nan
      project_name :
      regionmask - SREX Regions
      time_coverage_end :
      1980-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1980-01-05
      units :
      -
      url :
      https://regionmask.readthedocs.io/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • stemp
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      40
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Surface Temperature
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'surface temperature', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'stemp', 'spatial_resolution': '0.50 degree', 'standard_name': 'stemp', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'K', 'url': 'http://www.dwd.de', 'valid_max': 320.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      units :
      K
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • surface_moisture
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      63
      esa_cci_path :
      nan
      long_name :
      Surface Soil Moisture
      orig_attrs :
      {'long_name': 'Surface Soil Moisture', 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'SMsurf', 'standard_name': 'soil_moisture_content', 'units': 'mm3/mm3', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      units :
      mm3/mm3
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • terrestrial_ecosystem_respiration
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      52
      esa_cci_path :
      nan
      long_name :
      Terrestrial Ecosystem Respiration
      orig_attrs :
      {'comment': 'Total carbon release of the ecosystem through respiration.', 'long_name': 'Terrestrial Ecosystem Respiration', 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'TERall', 'standard_name': 'ecosystem_respiration_carbon_flux', 'units': 'gC m-2 day-1', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2012-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      units :
      gC m-2 day-1
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • totcol_assim
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      13
      esa_cci_path :
      nan
      long_name :
      Total Ozone Column (Assimilated TM5 data)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'total ozone column derived from assimilated TM5 data', 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'totcol_assim', 'standard_name': 'atmosphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • totcol_free
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      14
      esa_cci_path :
      nan
      long_name :
      Total Ozone Column (Assimilated TM5 data)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'total ozone column derived from assimilated TM5 data', 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'totcol_free', 'standard_name': 'atmosphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • totcol_msr
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      15
      esa_cci_path :
      nan
      long_name :
      Total Ozone Column (MSR data)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'total ozone column derived from MSR data', 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'totcol_msr', 'standard_name': 'atmosphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      units :
      mol m-2
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • transpiration
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      64
      esa_cci_path :
      nan
      long_name :
      Transpiration
      orig_attrs :
      {'long_name': 'Transpiration', 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Et', 'standard_name': 'transpiration_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      units :
      mm/day
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • water_mask
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      43
      esa_cci_path :
      /neodc/esacci/land_cover/data/water_bodies/v4.0/
      long_name :
      Terrestrial or Water Pixel Classification
      orig_attrs :
      {'long_name': 'Terrestrial or water pixel classification', 'project_name': 'Climate Change Initiative - European Space Agency', 'source_name': 'wb_class', 'standard_name': 'land_cover_lccs', 'units': '-', 'url': 'http://www.esa-landcover-cci.org'}
      orig_version :
      v4.0
      project_name :
      ESA Land Cover Climate Change Initiative (Land_Cover_cci)
      time_coverage_end :
      1980-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1980-01-05
      units :
      -
      url :
      http://www.esa-landcover-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • water_vapour
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      70
      esa_cci_path :
      nan
      long_name :
      Total Column Water Vapour
      orig_attrs :
      {'comment': 'Total column water vapour based on the GlobVapour CCI product.', 'long_name': 'Total Column Water Vapour', 'project_name': 'GlobVapour', 'references': 'Schneider, Nadine, et al. "ESA DUE GlobVapour water vapor products: Validation." AIP Conference Proceedings. Vol. 1531. No. 1. 2013.', 'source_name': 'tcwv_res', 'standard_name': 'atmosphere_mass_content_of_water_vapor', 'units': 'kg m-2', 'url': 'http://www.globvapour.info/'}
      orig_version :
      nan
      project_name :
      GlobVapour
      time_coverage_end :
      2008-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1996-01-05
      units :
      kg m-2
      url :
      http://www.globvapour.info/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • white_sky_albedo
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      66
      esa_cci_path :
      nan
      long_name :
      White Sky Albedo for Visible Wavebands
      orig_attrs :
      {'comment': 'White sky albedo derived from the GlobAlbedo CCI project dataset', 'long_name': 'White Sky Albedo for Visible Wavebands', 'project_name': 'GlobAlbedo', 'references': 'Muller, Jan-Peter, et al. "The ESA GLOBALBEDO project for mapping the Earth’s land surface albedo for 15 years from European sensors." Geophysical Research Abstracts. Vol. 13. 2012.', 'source_name': 'BHR_VIS', 'standard_name': 'surface_albedo_white_sky', 'units': '-', 'url': 'http://www.globalbedo.org/'}
      orig_version :
      nan
      project_name :
      GlobAlbedo
      time_coverage_end :
      2012-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1998-01-05
      units :
      -
      url :
      http://www.globalbedo.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • white_sky_albedo_avhrr
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      75
      esa_cci_path :
      nan
      long_name :
      Bi-Hemisphere Reflectance Albedo - VIS band
      orig_attrs :
      {'comment': 'White sky albedo derived from the QA4ECV Albedo Product', 'long_name': 'Bi-Hemisphere Reflectance albedo - VIS band', 'project_name': 'QA4ECV - European Union Framework Program 7', 'source_name': 'BHR_VIS', 'standard_name': 'surface_albedo_white_sky', 'units': '1', 'url': 'http://www.qa4ecv.eu/'}
      orig_version :
      nan
      project_name :
      QA4ECV - European Union Framework Program 7
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1982-01-05
      units :
      1
      url :
      http://www.qa4ecv.eu/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • xch4
      (time, lat, lon)
      float64
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      42
      esa_cci_path :
      /neodc/esacci/ghg/data/obs4mips/crdp_3/CO2/v100/
      long_name :
      Column Average Dry-air Mole Fraction Methane
      orig_attrs :
      {'Conventions': 'CF-1.6', 'associated_files': 'obs4mips_co2_crdp3_v100.sav', 'cell_methods': 'time: mean', 'comment': 'Satellite retrieved column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2)', 'contact': 'maximilian.reuter@iup.physik.uni-bremen.de', 'creation_date': '20160303T111125Z', 'data_structure': 'grid', 'frequency': 'mon', 'institute_id': 'IUP', 'institution': 'Institute of Environmental Physics, University of Bremen', 'long_name': 'column-average dry-air mole fraction of atmospheric carbon dioxide', 'mip_specs': 'CMIP5', 'product': 'observations', 'project_id': 'obs4MIPs', 'project_name': 'Ozone CCI', 'realm': 'atmos', 'references': 'Laeng, A., et al. "The ozone climate change initiative: Comparison of four Level-2 processors for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)." Remote Sensing of Environment 162 (2015): 316-343.', 'source': 'ESA GHG CCI XCO2 CRDP3', 'source_id': 'XCO2_CRDP3', 'source_name': 'xch4', 'source_type': 'satellite_retrieval', 'standard_name': 'dry_atmosphere_mole_fraction_of_carbon_dioxide', 'tracking_id': '60972082-05c2-4a04-947a-99042c642c68', 'units': '1', 'url': 'http://www.esa-ghg-cci.org/'}
      orig_version :
      v100
      project_name :
      ESA Greenhouse Gases Climate Change Initiative (GHG_cci)
      time_coverage_end :
      2014-12-15
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-13
      units :
      1
      url :
      http://www.esa-ghg-cci.org/
      Array Chunk
      Bytes 14.12 GB 8.29 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float64 numpy.ndarray
      1440 720 1702
    • xco2
      (time, lat, lon)
      float64
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      41
      esa_cci_path :
      /neodc/esacci/ghg/data/obs4mips/crdp_3/CO2/v100/
      long_name :
      Column Average Dry-air Mole Fraction Carbon Dioxide
      orig_attrs :
      {'Conventions': 'CF-1.6', 'associated_files': 'obs4mips_co2_crdp3_v100.sav', 'cell_methods': 'time: mean', 'comment': 'Satellite retrieved column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2)', 'contact': 'maximilian.reuter@iup.physik.uni-bremen.de', 'creation_date': '20160303T111125Z', 'data_structure': 'grid', 'frequency': 'mon', 'institute_id': 'IUP', 'institution': 'Institute of Environmental Physics, University of Bremen', 'long_name': 'column-average dry-air mole fraction of atmospheric carbon dioxide', 'mip_specs': 'CMIP5', 'product': 'observations', 'project_id': 'obs4MIPs', 'project_name': 'Ozone CCI', 'realm': 'atmos', 'references': 'Laeng, A., et al. "The ozone climate change initiative: Comparison of four Level-2 processors for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)." Remote Sensing of Environment 162 (2015): 316-343.', 'source': 'ESA GHG CCI XCO2 CRDP3', 'source_id': 'XCO2_CRDP3', 'source_name': 'xco2', 'source_type': 'satellite_retrieval', 'standard_name': 'dry_atmosphere_mole_fraction_of_carbon_dioxide', 'tracking_id': '60972082-05c2-4a04-947a-99042c642c68', 'units': '1', 'url': 'http://www.esa-ghg-cci.org/'}
      orig_version :
      v100
      project_name :
      ESA Greenhouse Gases Climate Change Initiative (GHG_cci)
      time_coverage_end :
      2014-12-15
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-13
      units :
      1
      url :
      http://www.esa-ghg-cci.org/
      Array Chunk
      Bytes 14.12 GB 8.29 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float64 numpy.ndarray
      1440 720 1702
  • Metadata_conventions :
    Unidata Dataset Discovery v1.0
    acknowledgment :
    The ESDL team acknowledges all data providers!
    chunking :
    1x720x1440
    comment :
    none.
    contributor_name :
    Max Planck Institute for Biogeochemistry
    contributor_role :
    ESDL Science Lead
    creator_email :
    info@earthsystemdatalab.net
    creator_name :
    Brockmann Consult GmbH
    creator_url :
    www.earthsystemdatalab.net
    date_created :
    17.12.2018
    date_issued :
    19.12.2018
    date_modified :
    17.12.2018
    geospatial_lat_max :
    89.75
    geospatial_lat_min :
    -89.75
    geospatial_lon_max :
    179.75
    geospatial_lon_min :
    -179.75
    geospatial_resolution :
    1/4deg
    history :
    - processing with esdl cube v0.1 (https://github.com/esa-esdl/esdl-core/)
    id :
    v2.0.0
    institution :
    Brockmann Consult GmbH
    keywords :
    Earth Science, Geophysical Variables
    license :
    Please refer to individual variables
    naming_authority :
    Earth System Data Lab team
    processing_level :
    Level 4
    project :
    ESA Earth System Data Lab
    publisher_email :
    info@earthsystemdatalab.net
    publisher_name :
    Brockmann Consult GmbH & Max Planck Institute for Biogechemistry
    publisher_url :
    www.brockmann-consult.de
    standard_name_vocabulary :
    CF-1.7
    summary :
    This data set contains a data cube of Earth System variables created by the ESA project Earth System Data Lab.
    time_coverage_duration :
    P37Y
    time_coverage_end :
    30.12.2016
    time_coverage_resolution :
    P8D
    time_coverage_start :
    05.01.1980
    title :
    Earth System Data Cube

And now we can access the variables that we require only, e.g. gross_primary_productivity and soil_moisture.

variables = [
    'land_surface_temperature',
    'soil_moisture'
]
cubes = cube_from_s3_bucket[variables]
cubes
Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • lat: 720
    • lon: 1440
    • time: 1702
    • lon
      (lon)
      float32
      -179.875 -179.625 ... 179.875
      array([-179.875, -179.625, -179.375, ...,  179.375,  179.625,  179.875],
            dtype=float32)
    • lat
      (lat)
      float32
      89.875 89.625 ... -89.625 -89.875
      array([ 89.875,  89.625,  89.375, ..., -89.375, -89.625, -89.875],
            dtype=float32)
    • time
      (time)
      datetime64[ns]
      1980-01-05 ... 2016-12-30
      bounds :
      time_bnds
      long_name :
      time
      standard_name :
      time
      array(['1980-01-05T00:00:00.000000000', '1980-01-13T00:00:00.000000000',
             '1980-01-21T00:00:00.000000000', ..., '2016-12-14T00:00:00.000000000',
             '2016-12-22T00:00:00.000000000', '2016-12-30T00:00:00.000000000'],
            dtype='datetime64[ns]')
    • land_surface_temperature
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      69
      esa_cci_path :
      nan
      long_name :
      Land Surface Temperature
      orig_attrs :
      {'comment': 'Advanced Along Track Scanning Radiometer pixel land surface temperature product', 'long_name': 'Land Surface Temperature', 'orig_attrs': {}, 'project_name': 'GlobTemperature', 'references': 'Jiménez, C., et al. "Inversion of AMSR‐E observations for land surface temperature estimation: 1. Methodology and evaluation with station temperature." Journal of Geophysical Research: Atmospheres 122.6 (2017): 3330-3347.', 'source_name': 'LST', 'standard_name': 'surface_temperature', 'units': 'K', 'url': 'http://data.globtemperature.info/'}
      orig_version :
      nan
      project_name :
      GlobTemperature
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2002-05-21
      units :
      K
      url :
      http://data.globtemperature.info/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • soil_moisture
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      78
      esa_cci_path :
      /neodc/esacci/soil_moisture/data/daily_files/COMBINED/v04.2/
      long_name :
      Soil Moisture
      orig_attrs :
      {'comment': 'Soil moisture based on the SOilmoisture CCI project', 'long_name': 'Soil Moisture', 'project_name': 'SoilMoisture CCI', 'references': 'Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A.M., Wagner, W., McCabe, M.F., Evans, J.P., and van Dijk, A.I.J.M. (2012): Trend-preserving blending of passive and active microwave soil moisture retrievals; Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A.M., Wagner, W., van Dijk, A.I.J.M., McCabe, M.F., & Evans, J.P. (2011): Developing an improved soil moisture dataset by blending passive and active microwave satellite based retrievals. Hydrology and Earth System Sciences, 15, 425-436.', 'source_name': 'SoilMoisture', 'standard_name': 'soil_moisture_content', 'units': 'm3', 'url': 'http://www.esa-soilmoisture-cci.org'}
      orig_version :
      v04.2
      project_name :
      SoilMoisture CCI
      time_coverage_end :
      2014-01-29
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1980-01-05
      units :
      m3
      url :
      http://www.esa-soilmoisture-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
  • Metadata_conventions :
    Unidata Dataset Discovery v1.0
    acknowledgment :
    The ESDL team acknowledges all data providers!
    chunking :
    1x720x1440
    comment :
    none.
    contributor_name :
    Max Planck Institute for Biogeochemistry
    contributor_role :
    ESDL Science Lead
    creator_email :
    info@earthsystemdatalab.net
    creator_name :
    Brockmann Consult GmbH
    creator_url :
    www.earthsystemdatalab.net
    date_created :
    17.12.2018
    date_issued :
    19.12.2018
    date_modified :
    17.12.2018
    geospatial_lat_max :
    89.75
    geospatial_lat_min :
    -89.75
    geospatial_lon_max :
    179.75
    geospatial_lon_min :
    -179.75
    geospatial_resolution :
    1/4deg
    history :
    - processing with esdl cube v0.1 (https://github.com/esa-esdl/esdl-core/)
    id :
    v2.0.0
    institution :
    Brockmann Consult GmbH
    keywords :
    Earth Science, Geophysical Variables
    license :
    Please refer to individual variables
    naming_authority :
    Earth System Data Lab team
    processing_level :
    Level 4
    project :
    ESA Earth System Data Lab
    publisher_email :
    info@earthsystemdatalab.net
    publisher_name :
    Brockmann Consult GmbH & Max Planck Institute for Biogechemistry
    publisher_url :
    www.brockmann-consult.de
    standard_name_vocabulary :
    CF-1.7
    summary :
    This data set contains a data cube of Earth System variables created by the ESA project Earth System Data Lab.
    time_coverage_duration :
    P37Y
    time_coverage_end :
    30.12.2016
    time_coverage_resolution :
    P8D
    time_coverage_start :
    05.01.1980
    title :
    Earth System Data Cube
cube_from_s3_bucket.precipitation.mean(dim='time').plot()
/home/emmanuel/.conda/envs/rbig_eo/lib/python3.8/site-packages/dask/array/numpy_compat.py:40: RuntimeWarning: invalid value encountered in true_divide
  x = np.divide(x1, x2, out)
<matplotlib.collections.QuadMesh at 0x7f1f505a96d0>
cube_from_s3_bucket.root_moisture.mean(dim='time').plot()

Method II - Personal Server

Like I said before, I have personally downloaded the cubes on our server so I can access them in house. First let's look at the available cubes.

!ls $DATA_PATH
Cube_2019highColombiaCube_184x120x120.zarr
Cube_2019highColombiaCube_1x3360x2760.zarr
esdc-8d-0.083deg-184x270x270-2.0.0.zarr
esdc-8d-0.083deg-1x2160x4320-2.0.0.zarr
esdc-8d-0.25deg-184x90x90-2.0.0.zarr
esdc-8d-0.25deg-1x720x1440-2.0.0.zarr

We're going to open the datacube with 0.25 degree resolution that is optimized for spatial computations.

# get filename
filename = DATA_PATH.joinpath("esdc-8d-0.25deg-1x720x1440-2.0.0.zarr")

# open datacube
datacube = xr.open_zarr(str(filename))

datacube
Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • bnds: 2
    • lat: 720
    • lon: 1440
    • time: 1702
    • lat
      (lat)
      float32
      89.875 89.625 ... -89.625 -89.875
      array([ 89.875,  89.625,  89.375, ..., -89.375, -89.625, -89.875],
            dtype=float32)
    • lat_bnds
      (lat, bnds)
      float32
      dask.array<chunksize=(720, 2), meta=np.ndarray>
      Array Chunk
      Bytes 5.76 kB 5.76 kB
      Shape (720, 2) (720, 2)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2 720
    • lon
      (lon)
      float32
      -179.875 -179.625 ... 179.875
      array([-179.875, -179.625, -179.375, ...,  179.375,  179.625,  179.875],
            dtype=float32)
    • lon_bnds
      (lon, bnds)
      float32
      dask.array<chunksize=(1440, 2), meta=np.ndarray>
      Array Chunk
      Bytes 11.52 kB 11.52 kB
      Shape (1440, 2) (1440, 2)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2 1440
    • time
      (time)
      datetime64[ns]
      1980-01-05 ... 2016-12-30
      bounds :
      time_bnds
      long_name :
      time
      standard_name :
      time
      array(['1980-01-05T00:00:00.000000000', '1980-01-13T00:00:00.000000000',
             '1980-01-21T00:00:00.000000000', ..., '2016-12-14T00:00:00.000000000',
             '2016-12-22T00:00:00.000000000', '2016-12-30T00:00:00.000000000'],
            dtype='datetime64[ns]')
    • time_bnds
      (time, bnds)
      datetime64[ns]
      dask.array<chunksize=(1702, 2), meta=np.ndarray>
      Array Chunk
      Bytes 27.23 kB 27.23 kB
      Shape (1702, 2) (1702, 2)
      Count 2 Tasks 1 Chunks
      Type datetime64[ns] numpy.ndarray
      2 1702
    • Rg
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      2
      esa_cci_path :
      nan
      long_name :
      Downwelling shortwave radiation
      orig_attrs :
      {'long_name': 'Downwelling shortwave radiation', 'project_name': 'BESS', 'references': 'Ryu, Y.*, Jiang, C., Kobayashi, H., & Detto, M. (2018). MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sensing of Environment, 204, 812-825', 'source_name': 'surface_downwelling_shortwave_flux_in_air', 'standard_name': 'surface_downwelling_shortwave_flux_in_air', 'units': 'W m-2', 'url': 'http://environment.snu.ac.kr/bess_rad/'}
      orig_version :
      15.10.2017
      project_name :
      BESS
      time_coverage_end :
      2010-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-03-01
      url :
      http://environment.snu.ac.kr/bess_rad/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • aerosol_optical_thickness_1600
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      25
      esa_cci_path :
      /neodc/esacci/aerosol/data/AATSR_SU/L3/v4.21/DAILY/
      long_name :
      Aerosol optical thickness at 1600 nm
      orig_attrs :
      {'Conventions': 'CF-1.6', 'cdm_data_type': 'grid', 'coordinates': 'latitude longitude', 'creator_email': 'p.r.j.north@swansea.ac.uk, a.heckel@swansea.ac.uk', 'creator_name': 'Swansea University', 'creator_url': 'http:\\/\\/www.swan.ac.uk\\/staff\\/academic\\/environmentsociety\\/geography\\/northpeter\\/', 'date_created': '20151022T231808Z', 'geospatial_lat_max': '90.0', 'geospatial_lat_min': '-90.0', 'geospatial_lat_resolution': '1.0', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': '180.0', 'geospatial_lon_min': '-180.0', 'geospatial_lon_resolution': '1.0', 'geospatial_lon_units': 'degrees_east', 'history': 'Level 3 product from Swansea algorithm', 'id': '20020724141127-ESACCI-L3C_AEROSOL-AER_PRODUCTS-AATSR_ENVISAT-SU_DAILY-v4.21.nc', 'inputfilelist': 'ATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1', 'keywords': 'satellite,observation,atmosphere', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'lat': 180, 'license': 'ESA CCI Data Policy: free and open access', 'lon': 360, 'long_name': 'aerosol optical thickness at 1600 nm', 'naming_authority': 'uk.ac.su.aatsraerosol', 'orig_attrs': {}, 'platform': 'ENVISAT', 'product_version': '4.21', 'project': 'Climate Change Initiative - European Space Agency', 'projection': 'equirectangular', 'references': 'http:\\/\\/www.esa-aerosol-cci.org', 'resolution': '1x1 degrees', 'sensor': 'AATSR', 'source': 'ATS_TOA_1P, V6.05', 'source_name': 'AAOD550_mean', 'standard_name': 'atmosphere_optical_thickness_due_to_ambient_aerosol', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains the level-3 daily mean aerosol properties products from AATSR satellite observations. Data are processed by Swansea algorithm', 'time': '1', 'time_coverage_end': '20020724T233825Z', 'time_coverage_start': '20020724T143513Z', 'title': 'AARDVARC CCI aerosol product level 3', 'tracking_id': 'a63f9cd2-1fed-4f9a-82fd-91f1c1b966b2', 'units': '1'}
      orig_version :
      v4.21
      project_name :
      ESA Aerosol CCI
      time_coverage_end :
      2012-04-10
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2002-07-24
      url :
      http://www.esa-aerosol-cci.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • aerosol_optical_thickness_550
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      26
      esa_cci_path :
      /neodc/esacci/aerosol/data/AATSR_SU/L3/v4.21/DAILY/
      long_name :
      Aerosol optical thickness at 550 nm
      orig_attrs :
      {'Conventions': 'CF-1.6', 'cdm_data_type': 'grid', 'coordinates': 'latitude longitude', 'creator_email': 'p.r.j.north@swansea.ac.uk, a.heckel@swansea.ac.uk', 'creator_name': 'Swansea University', 'creator_url': 'http:\\/\\/www.swan.ac.uk\\/staff\\/academic\\/environmentsociety\\/geography\\/northpeter\\/', 'date_created': '20151022T231808Z', 'geospatial_lat_max': '90.0', 'geospatial_lat_min': '-90.0', 'geospatial_lat_resolution': '1.0', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': '180.0', 'geospatial_lon_min': '-180.0', 'geospatial_lon_resolution': '1.0', 'geospatial_lon_units': 'degrees_east', 'history': 'Level 3 product from Swansea algorithm', 'id': '20020724141127-ESACCI-L3C_AEROSOL-AER_PRODUCTS-AATSR_ENVISAT-SU_DAILY-v4.21.nc', 'inputfilelist': 'ATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1', 'keywords': 'satellite,observation,atmosphere', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'lat': 180, 'license': 'ESA CCI Data Policy: free and open access', 'lon': 360, 'long_name': 'aerosol optical thickness at 550 nm', 'naming_authority': 'uk.ac.su.aatsraerosol', 'orig_attrs': {}, 'platform': 'ENVISAT', 'product_version': '4.21', 'project': 'Climate Change Initiative - European Space Agency', 'projection': 'equirectangular', 'references': 'http:\\/\\/www.esa-aerosol-cci.org', 'resolution': '1x1 degrees', 'sensor': 'AATSR', 'source': 'ATS_TOA_1P, V6.05', 'source_name': 'AAOD550_mean', 'standard_name': 'atmosphere_optical_thickness_due_to_ambient_aerosol', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains the level-3 daily mean aerosol properties products from AATSR satellite observations. Data are processed by Swansea algorithm', 'time': '1', 'time_coverage_end': '20020724T233825Z', 'time_coverage_start': '20020724T143513Z', 'title': 'AARDVARC CCI aerosol product level 3', 'tracking_id': 'a63f9cd2-1fed-4f9a-82fd-91f1c1b966b2', 'units': '1'}
      orig_version :
      v4.21
      project_name :
      ESA Aerosol CCI
      time_coverage_end :
      2012-04-10
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2002-07-24
      url :
      http://www.esa-aerosol-cci.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • aerosol_optical_thickness_670
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      27
      esa_cci_path :
      /neodc/esacci/aerosol/data/AATSR_SU/L3/v4.21/DAILY/
      long_name :
      Aerosol optical thickness at 670 nm
      orig_attrs :
      {'Conventions': 'CF-1.6', 'cdm_data_type': 'grid', 'coordinates': 'latitude longitude', 'creator_email': 'p.r.j.north@swansea.ac.uk, a.heckel@swansea.ac.uk', 'creator_name': 'Swansea University', 'creator_url': 'http:\\/\\/www.swan.ac.uk\\/staff\\/academic\\/environmentsociety\\/geography\\/northpeter\\/', 'date_created': '20151022T231808Z', 'geospatial_lat_max': '90.0', 'geospatial_lat_min': '-90.0', 'geospatial_lat_resolution': '1.0', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': '180.0', 'geospatial_lon_min': '-180.0', 'geospatial_lon_resolution': '1.0', 'geospatial_lon_units': 'degrees_east', 'history': 'Level 3 product from Swansea algorithm', 'id': '20020724141127-ESACCI-L3C_AEROSOL-AER_PRODUCTS-AATSR_ENVISAT-SU_DAILY-v4.21.nc', 'inputfilelist': 'ATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1', 'keywords': 'satellite,observation,atmosphere', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'lat': 180, 'license': 'ESA CCI Data Policy: free and open access', 'lon': 360, 'long_name': 'aerosol optical thickness at 670 nm', 'naming_authority': 'uk.ac.su.aatsraerosol', 'orig_attrs': {}, 'platform': 'ENVISAT', 'product_version': '4.21', 'project': 'Climate Change Initiative - European Space Agency', 'projection': 'equirectangular', 'references': 'http:\\/\\/www.esa-aerosol-cci.org', 'resolution': '1x1 degrees', 'sensor': 'AATSR', 'source': 'ATS_TOA_1P, V6.05', 'source_name': 'AAOD550_mean', 'standard_name': 'atmosphere_optical_thickness_due_to_ambient_aerosol', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains the level-3 daily mean aerosol properties products from AATSR satellite observations. Data are processed by Swansea algorithm', 'time': '1', 'time_coverage_end': '20020724T233825Z', 'time_coverage_start': '20020724T143513Z', 'title': 'AARDVARC CCI aerosol product level 3', 'tracking_id': 'a63f9cd2-1fed-4f9a-82fd-91f1c1b966b2', 'units': '1'}
      orig_version :
      v4.21
      project_name :
      ESA Aerosol CCI
      time_coverage_end :
      2012-04-10
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2002-07-24
      url :
      http://www.esa-aerosol-cci.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • aerosol_optical_thickness_870
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      28
      esa_cci_path :
      /neodc/esacci/aerosol/data/AATSR_SU/L3/v4.21/DAILY/
      long_name :
      Aerosol optical thickness at 870 nm
      orig_attrs :
      {'Conventions': 'CF-1.6', 'cdm_data_type': 'grid', 'coordinates': 'latitude longitude', 'creator_email': 'p.r.j.north@swansea.ac.uk, a.heckel@swansea.ac.uk', 'creator_name': 'Swansea University', 'creator_url': 'http:\\/\\/www.swan.ac.uk\\/staff\\/academic\\/environmentsociety\\/geography\\/northpeter\\/', 'date_created': '20151022T231808Z', 'geospatial_lat_max': '90.0', 'geospatial_lat_min': '-90.0', 'geospatial_lat_resolution': '1.0', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': '180.0', 'geospatial_lon_min': '-180.0', 'geospatial_lon_resolution': '1.0', 'geospatial_lon_units': 'degrees_east', 'history': 'Level 3 product from Swansea algorithm', 'id': '20020724141127-ESACCI-L3C_AEROSOL-AER_PRODUCTS-AATSR_ENVISAT-SU_DAILY-v4.21.nc', 'inputfilelist': 'ATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1 \nATS_TOA_1PUUPA20020724_141127_000065272008_00024_02082_5805.N1', 'keywords': 'satellite,observation,atmosphere', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'lat': 180, 'license': 'ESA CCI Data Policy: free and open access', 'lon': 360, 'long_name': 'aerosol optical thickness at 870 nm', 'naming_authority': 'uk.ac.su.aatsraerosol', 'orig_attrs': {}, 'platform': 'ENVISAT', 'product_version': '4.21', 'project': 'Climate Change Initiative - European Space Agency', 'projection': 'equirectangular', 'references': 'http:\\/\\/www.esa-aerosol-cci.org', 'resolution': '1x1 degrees', 'sensor': 'AATSR', 'source': 'ATS_TOA_1P, V6.05', 'source_name': 'AAOD550_mean', 'standard_name': 'atmosphere_optical_thickness_due_to_ambient_aerosol', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains the level-3 daily mean aerosol properties products from AATSR satellite observations. Data are processed by Swansea algorithm', 'time': '1', 'time_coverage_end': '20020724T233825Z', 'time_coverage_start': '20020724T143513Z', 'title': 'AARDVARC CCI aerosol product level 3', 'tracking_id': 'a63f9cd2-1fed-4f9a-82fd-91f1c1b966b2', 'units': '1'}
      orig_version :
      v4.21
      project_name :
      ESA Aerosol CCI
      time_coverage_end :
      2012-04-10
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2002-07-24
      url :
      http://www.esa-aerosol-cci.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • air_temperature_2m
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      4
      esa_cci_path :
      nan
      long_name :
      2 Metre Air Temperature
      orig_attrs :
      {'comment': 'Air temperature at 2m from the ERA5 reanalysis product.', 'long_name': '2 metre air temperature', 'orig_attrs': {}, 'project_name': 'ERA5', 'references': '', 'source_name': 'air_temperature_2m', 'units': 'K', 'url': 'https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation'}
      orig_version :
      ERA5
      project_name :
      ERA5
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-05
      url :
      https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • analysed_sst
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      44
      esa_cci_path :
      /neodc/esacci/sst/data/lt/Analysis/L4/v01.1/
      long_name :
      Analysed Sea Surface Temperature
      orig_attrs :
      {'Conventions': 'CF-1.5, Unidata Observation Dataset v1.0', 'Metadata_Conventions': 'Unidata Dataset Discovery v1.0', 'acknowledgment': 'Funded by ESA', 'cdm_data_type': 'grid', 'comment': 'WARNING Some applications are unable to properly handle signed byte values. If values are encountered > 127, please subtract 256 from this reported value', 'creator_email': 'science.leader@esa-sst-cci.org', 'creator_name': 'ESA SST CCI', 'creator_processing_institution': 'These data were produced at the Met Office as part of the ESA SST CCI project.', 'creator_url': 'http://www.esa-sst-cci.org', 'date_created': '20130309T132046Z', 'easternmost_longitude': 180.00001525878906, 'file_quality_level': 3, 'gds_version_id': '2.0', 'geospatial_lat_max': 90.0, 'geospatial_lat_min': -90.0, 'geospatial_lat_resolution': 0.05000000074505806, 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 180.0, 'geospatial_lon_min': -180.0, 'geospatial_lon_resolution': 0.05000000074505806, 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': -0.20000000298023224, 'geospatial_vertical_min': -0.20000000298023224, 'history': 'Created using OSTIA reanalysis system v2.0', 'id': 'OSTIA-ESACCI-L4-v01.1', 'institution': 'ESACCI', 'keywords': 'Oceans > Ocean Temperature > Sea Surface Temperature', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'license': 'GHRSST protocol describes data use as free and open', 'long_name': 'analysed sea surface temperature', 'metadata_link': 'http://www.esa-cci.org', 'naming_authority': 'org.ghrsst', 'netcdf_version_id': '4.1.3', 'northernmost_latitude': 90.0, 'orig_attrs': {}, 'platform': 'ERS-<1,2>, Envisat, NOAA-<12,14,15,16,17,18>, MetOpA', 'processing_level': 'L4', 'product_version': '1.1', 'project': 'Climate Change Initiative - European Space Agency', 'publisher_email': 'science.leader@esa-sst-cci.org', 'publisher_name': 'ESACCI', 'publisher_url': 'http://www.esa-sst-cci.org', 'references': 'http://www.esa-sst-cci.org', 'sensor': 'ATSR, AATSR, AVHRR_GAC', 'source': 'ATSR<1,2>-ESACCI-L3U-v1.0, AATSR-ESACCI-L3U-v1.0, AVHRR<12,14,15,16,17,18>_G-ESACCI-L2P-v1.0, AVHRRMTA-ESACCI-L2P-v1.0, EUMETSAT_OSI-SAF-ICE-v1.1, EUMETSAT_OSI-SAF-ICE-v2.2', 'source_dir': '/neodc/esacci/sst/data/lt/Analysis/L4/v01.1', 'source_name': 'analysed_sst', 'source_version': 'v01.1', 'southernmost_latitude': -90.0, 'spatial_resolution': '0.05 degree', 'standard_name': 'sea_water_temperature', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention', 'start_time': '20100101T000000Z', 'stop_time': '20100101T235959Z', 'summary': 'OSTIA L4 product from the ESA SST CCI project, produced using OSTIA reanalysis system v2.0. Ice field corrected in v1.1 (v1.0 had ice from day-1). Static ice field between 20080101-20080229 and 20080501-20080521 also fixed in v1.1', 'time_coverage_duration': 'P1D', 'time_coverage_end': '20100101T235959Z', 'time_coverage_resolution': 'P1D', 'time_coverage_start': '20100101T000000Z', 'title': 'ESA SST CCI OSTIA L4 product', 'tracking_id': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'units': 'kelvin', 'url': 'http://www.esa-sst-cci.org', 'uuid': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'valid_max': 4500.0, 'valid_min': -300.0, 'westernmost_longitude': -180.0}
      orig_version :
      v01.1
      project_name :
      ESA Sea Surface Temperature Climate Change Initiative (ESA SST CCI)
      time_coverage_end :
      2010-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1991-09-02
      url :
      http://www.esa-sst-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • bare_soil_evaporation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      55
      esa_cci_path :
      nan
      long_name :
      Bare Soil Evaporation
      orig_attrs :
      {'long_name': 'Bare Soil Evaporation', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Eb', 'standard_name': 'bare_soil_water_evaporation_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • black_sky_albedo
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      65
      esa_cci_path :
      nan
      long_name :
      Black Sky Albedo for Visible Wavebands
      orig_attrs :
      {'comment': 'Black sky albedo derived from the GlobAlbedo CCI project dataset', 'long_name': 'Black Sky Albedo for Visible Wavebands', 'orig_attrs': {}, 'project_name': 'GlobAlbedo', 'references': 'Muller, Jan-Peter, et al. "The ESA GLOBALBEDO project for mapping the Earth’s land surface albedo for 15 years from European sensors." Geophysical Research Abstracts. Vol. 13. 2012.', 'source_name': 'DHR_VIS', 'standard_name': 'surface_albedo_black_sky', 'units': '-', 'url': 'http://www.globalbedo.org/'}
      orig_version :
      nan
      project_name :
      GlobAlbedo
      time_coverage_end :
      2012-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1998-01-05
      url :
      http://www.globalbedo.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • black_sky_albedo_avhrr
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      76
      esa_cci_path :
      nan
      long_name :
      Directional Hemisphere Reflectance albedo - VIS band
      orig_attrs :
      {'comment': 'Black sky albedo derived from the QA4ECV Albedo Product', 'long_name': 'Directional Hemisphere Reflectance albedo - VIS band', 'orig_attrs': {}, 'project_name': 'QA4ECV - European Union Framework Program 7', 'source_name': 'DHR_VIS', 'standard_name': 'surface_albedo_black_sky', 'units': '1', 'url': 'http://www.qa4ecv.eu/'}
      orig_version :
      nan
      project_name :
      QA4ECV - European Union Framework Program 7
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1982-01-05
      url :
      http://www.qa4ecv.eu/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • burnt_area
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      54
      esa_cci_path :
      nan
      long_name :
      Monthly Burnt Area
      orig_attrs :
      {'comment': 'Burnt Area based on the GFED4 fire product.', 'long_name': 'Monthly Burnt Area', 'orig_attrs': {}, 'project_name': 'GFED4', 'references': 'Giglio, Louis, James T. Randerson, and Guido R. Werf. "Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4)." Journal of Geophysical Research: Biogeosciences 118.1 (2013): 317-328.', 'source_name': 'BurntArea', 'standard_name': 'burnt_area', 'units': 'hectares', 'url': 'http://www.globalfiredata.org/'}
      orig_version :
      gfed4
      project_name :
      GFED4
      time_coverage_end :
      2014-03-02
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1995-01-05
      url :
      http://www.globalfiredata.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • c_emissions
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      53
      esa_cci_path :
      nan
      long_name :
      Carbon Dioxide Emissions Due to Natural Fires
      orig_attrs :
      {'comment': 'Carbon emissions by fires based on the GFED4 fire product.', 'long_name': 'Carbon dioxide emissions due to natural fires expressed as carbon flux.', 'orig_attrs': {}, 'project_name': 'GFED4', 'references': 'Giglio, Louis, James T. Randerson, and Guido R. Werf. "Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4)." Journal of Geophysical Research: Biogeosciences 118.1 (2013): 317-328.', 'source_name': 'Emission', 'standard_name': 'surface_upward_mass_flux_of_carbon_dioxide_expressed_as_carbon_due_to_emission_from_fires', 'units': 'g C m-2 month-1', 'url': 'http://www.globalfiredata.org/'}
      orig_version :
      gfed4
      project_name :
      GFED4
      time_coverage_end :
      2010-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      url :
      http://www.globalfiredata.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • cee
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      30
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Effective Emissivity at 10.8 um
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud effective emissivity at 10.8 um', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cee', 'spatial_resolution': '0.50 degree', 'standard_name': 'cee', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': '1', 'url': 'http://www.dwd.de', 'valid_max': 1.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • cer
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      31
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Effective Radius
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud effective radius', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cer', 'spatial_resolution': '0.50 degree', 'standard_name': 'cer', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'um', 'url': 'http://www.dwd.de', 'valid_max': 200.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • cfc
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      32
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud fraction
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud fraction', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cfc', 'spatial_resolution': '0.50 degree', 'standard_name': 'cfc', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': '1', 'url': 'http://www.dwd.de', 'valid_max': 1.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • chlor_a
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      29
      esa_cci_path :
      /neodc/esacci/ocean_colour/data/v3.1-release/geographic/netcdf/chlor_a/daily/v3.1
      long_name :
      Chlorophyll-a Concentration in Seawater
      orig_attrs :
      {'Conventions': 'CF-1.6', 'Metadata_Conventions': 'Unidata Dataset Discovery v1.0', 'ancillary_variables': 'chlor_a_log10_rmsd chlor_a_log10_bias', 'cdm_data_type': 'Grid', 'comment': 'See summary attribute', 'creation_date': '20160822T065128Z', 'creator_email': 'help@esa-oceancolour-cci.org', 'creator_name': 'Plymouth Marine Laboratory', 'creator_url': 'http://esa-oceancolour-cci.org', 'date_created': '20160822T065128Z', 'geospatial_lat_max': 90.0, 'geospatial_lat_min': -90.0, 'geospatial_lat_resolution': '.04166666666666666666', 'geospatial_lat_units': 'decimal degrees north', 'geospatial_lon_max': 180.0, 'geospatial_lon_min': -180.0, 'geospatial_lon_resolution': '.04166666666666666666', 'geospatial_lon_units': 'decimal degrees east', 'geospatial_vertical_max': 0.0, 'geospatial_vertical_min': 0.0, 'grid_mapping': 'crs', 'history': 'Source data were: NASA OBPG SeaWiFS level2 R2014.0 LAC and GAC [A/C via l2gen], NASA OBPG VIIRS L2 R2014.0.1 (identical to R2014.0.2) [A/C via l2gen], NASA OBPG MODIS Aqua level 1A [A/C: l2gen equivalent to R2014.0.1 + Polymer 3.5] and ESA MERIS L1B (3rd reprocessing inc OCL correction) [Polymer v3.5]; Derived products were mainly produced with functions validated from the current NASA SeaDAS release and some custom implementations. Uncertainty generation determined by the fuzzy classifier scheme of Tim Moore (2009) and Thomas Jackson et al (2017)', 'id': 'ESACCI-OC-L3S-CHLOR_A-MERGED-1D_DAILY_4km_GEO_PML_OCx-20120101-fv3.1.nc', 'institution': 'Plymouth Marine Laboratory', 'keywords': 'satellite,observation,ocean,ocean colour', 'keywords_vocabulary': 'none', 'license': 'ESA CCI Data Policy: free and open access. When referencing, please use: Ocean Colour Climate Change Initiative dataset, Version <Version Number>, European Space Agency, available online at http://www.esa-oceancolour-cci.org. We would also appreciate being notified of publications so that we can list them on the project website at http://www.esa-oceancolour-cci.org/?q=publications', 'long_name': "Chlorophyll-a concentration in seawater (not log-transformed), generated by SeaDAS using a blended combination of OCI (OC4v6 + Hu's CI), OC3 and OC5, depending on water class memberships", 'naming_authority': 'uk.ac.pml', 'netcdf_file_type': 'NETCDF4_CLASSIC', 'number_of_optical_water_types': '14', 'orig_attrs': {}, 'parameter_vocab_uri': 'http://vocab.nerc.ac.uk/collection/P04/current/', 'platform': 'Orbview-2,Aqua,Envisat,Suomi-NPP', 'processing_level': 'Level-3', 'product_version': '3.1', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-oceancolour-cci.org/', 'sensor': 'SeaWiFS,MODIS,MERIS,VIIRS', 'source': 'NASA SeaWiFS L2 R2014.0 LAC and GAC, MODIS-Aqua L1A, MERIS L1B 3rd reprocessing inc OCL corrections, NASA VIIRS L2 R2014.0.1 (data identical to R2014.0.2)', 'source_dir': '/neodc/esacci/ocean_colour/data/v3.1-release/geographic/netcdf/chlor_a/daily/v3.1/', 'source_name': 'chlor_a', 'source_version': 'v3.1', 'spatial_resolution': '4km nominal at equator', 'standard_name': 'mass_concentration_of_chlorophyll_a_in_sea_water', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Conventions Version 1.6', 'start_date': '01-JAN-2012 00:00:00.000000', 'stop_date': '01-JAN-2012 23:59:00.000000', 'summary': "Data products generated by the Ocean Colour component of the European Space Agency Climate Change Initiative project. These files are daily composites of merged sensor (MERIS, MODIS Aqua, SeaWiFS LAC & GAC, VIIRS) products. MODIS Aqua and MERIS were band-shifted and bias-corrected to SeaWiFS bands and values using a temporally and spatially varying scheme based on the overlap years of 2003-2007. VIIRS was band-shifted and bias-corrected in a second stage against the MODIS Rrs that had already been corrected to SeaWiFS levels, for the overlap period 2012-2013. VIIRS and SeaWiFS Rrs were derived from standard NASA L2 products; MERIS and MODIS from a combination of NASA's l2gen (for basic sensor geometry corrections, etc) and HYGEOS Polymer v3.5 (for atmospheric correction). The Rrs were binned to a sinusoidal 4km level-3 grid, and later to 4km geographic projection, by Brockmann Consult's BEAM. Derived products were generally computed with the standard SeaDAS algorithms. QAA IOPs were derived using the standard SeaDAS algorithm but with a modified backscattering table to match that used in the bandshifting. The final chlorophyll is a combination of OC4, Hu's CI and OC5, depending on the water class memberships. Uncertainty estimates were added using the fuzzy water classifier and uncertainty estimation algorithm of Tim Moore as documented in Jackson et al (2017).", 'time_coverage_duration': 'P1D', 'time_coverage_end': '201201012359Z', 'time_coverage_resolution': 'P1D', 'time_coverage_start': '201201010000Z', 'title': 'ESA CCI Ocean Colour Product', 'tracking_id': '4e0985e0-f157-40f6-b0f1-0a2bb0261f12', 'units': 'milligram m-3', 'units_nonstandard': 'mg m^-3', 'url': 'http://esa-oceancolour-cci.org'}
      orig_version :
      v3.1
      project_name :
      ESA CCI Ocean Colour Product
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1997-09-02
      url :
      http://esa-oceancolour-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • cot
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      35
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Optical Thickness
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud optical thickness', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cot', 'spatial_resolution': '0.50 degree', 'standard_name': 'cot', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': '1', 'url': 'http://www.dwd.de', 'valid_max': 320.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • country_mask
      (time, lat, lon)
      float64
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      orig_attrs :
      {'ds_method': 'MODE', 'orig_attrs': {}, 'source_name': 'country_mask', 'standard_name': 'country_mask', 'units': '-'}
      Array Chunk
      Bytes 14.12 GB 8.29 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float64 numpy.ndarray
      1440 720 1702
    • cph
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      39
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Fraction of Liquid Water Clouds
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'fraction of liquid water clouds', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cph', 'spatial_resolution': '0.50 degree', 'standard_name': 'cph', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': '1', 'url': 'http://www.dwd.de', 'valid_max': 1.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • cth
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      36
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Top Height
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud top height', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'cth', 'spatial_resolution': '0.50 degree', 'standard_name': 'cth', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'km', 'url': 'http://www.dwd.de', 'valid_max': 20.0, 'valid_min': -1.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • ctp
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      37
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Top Pressure
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud top pressure', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'ctp', 'spatial_resolution': '0.50 degree', 'standard_name': 'ctp', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'hPa', 'url': 'http://www.dwd.de', 'valid_max': 1200.0, 'valid_min': 50.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • ctt
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      38
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Top Temperature
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud top temperature', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'ctt', 'spatial_resolution': '0.50 degree', 'standard_name': 'ctt', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'K', 'url': 'http://www.dwd.de', 'valid_max': 320.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • evaporation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      56
      esa_cci_path :
      nan
      long_name :
      Evaporation
      orig_attrs :
      {'long_name': 'Evaporation', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'E', 'standard_name': 'water_evaporation_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • evaporative_stress
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      57
      esa_cci_path :
      nan
      long_name :
      Evaporative Stress Factor
      orig_attrs :
      {'long_name': 'Evaporative Stress Factor', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'S', 'standard_name': 'evaporative_stress_factor', 'units': '', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • fapar_tip
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      74
      esa_cci_path :
      nan
      long_name :
      Fraction of Absorbed PAR
      orig_attrs :
      {'long_name': 'Fraction of Absorbed Photosynthetically Active Radiation', 'orig_attrs': {}, 'project_name': 'QA4ECV', 'source_name': 'fapar', 'standard_name': 'fapar', 'units': '1', 'url': 'http://www.qa4ecv.eu/'}
      orig_version :
      nan
      project_name :
      QA4ECV
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1982-01-05
      url :
      http://www.qa4ecv.eu/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • fat_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      21
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column (Fixed Altitude)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on Fixed Altitude definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'fat_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • fat_p
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      17
      esa_cci_path :
      nan
      long_name :
      Tropopause Air Pressure for the Fixed Altitude Tropopause
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropopause_air_pressure for the Fixed Altitude Tropopause', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'fat_p', 'standard_name': 'tropopause_air_pressure', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'hPa', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • flt_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      19
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on Fixed Layers definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'flt_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • flt_p
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      18
      esa_cci_path :
      nan
      long_name :
      Tropopause Air Pressure for the Fixed Layer Tropopause
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropopause_air_pressure for the fixed layer tropopause', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'flt_p', 'standard_name': 'tropopause_air_pressure', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'hPa', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • fractional_snow_cover
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      68
      esa_cci_path :
      nan
      long_name :
      Surface Fraction Covered by Snow
      orig_attrs :
      {'comment': 'Grid cell fractional snow cover based on the Globsnow CCI product.', 'long_name': 'Surface fraction covered by snow.', 'orig_attrs': {}, 'project_name': 'GlobSnow', 'references': 'Luojus, Kari, et al. "ESA DUE Globsnow-Global Snow Database for Climate Research." ESA Special Publication. Vol. 686. 2010.', 'source_name': 'MFSC', 'standard_name': 'surface_snow_area_fraction', 'units': 'percent', 'url': 'http://www.globsnow.info/'}
      orig_version :
      v2.0
      project_name :
      GlobSnow
      time_coverage_end :
      2013-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      url :
      http://www.globsnow.info/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • free_fat_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      22
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column (Fixed Altitude)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on Fixed Altitude definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'free_fat_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • free_flt_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      23
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column (Fixed Layers)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on Fixed Layers definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'free_flt_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • free_lrt_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      20
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column ( Lapse Rate)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on lapse rate definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'free_lrt_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • free_msr_flt
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      8
      esa_cci_path :
      nan
      long_name :
      Residual MSR-FLT (Stratospheric Part Partial)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'residual MSR-FLT_stratospheric_part partial ozone column in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'free_msr_flt', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • free_msr_lrt
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      10
      esa_cci_path :
      nan
      long_name :
      Residual MSR-LRT (Stratospheric Part Partial)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'residual MSR-LRT_stratospheric_part partial ozone column in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'free_msr_lrt', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • gross_primary_productivity
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      47
      esa_cci_path :
      nan
      long_name :
      Gross Primary Productivity
      orig_attrs :
      {'comment': 'Gross Carbon uptake of of the ecosystem through photosynthesis', 'long_name': 'Gross Primary Productivity', 'orig_attrs': {}, 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'GPPall', 'standard_name': 'gross_primary_productivity_of_carbon', 'units': 'gC m-2 day-1', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2015-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • interception_loss
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      58
      esa_cci_path :
      nan
      long_name :
      Interception Loss
      orig_attrs :
      {'long_name': 'Interception Loss', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Ei', 'standard_name': 'interception_loss', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • iwp
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      33
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Ice Water Path
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud ice water path', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'iwp', 'spatial_resolution': '0.50 degree', 'standard_name': 'iwp', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'g/m2', 'url': 'http://www.dwd.de', 'valid_max': 32000.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • land_surface_temperature
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      69
      esa_cci_path :
      nan
      long_name :
      Land Surface Temperature
      orig_attrs :
      {'comment': 'Advanced Along Track Scanning Radiometer pixel land surface temperature product', 'long_name': 'Land Surface Temperature', 'orig_attrs': {}, 'project_name': 'GlobTemperature', 'references': 'Jiménez, C., et al. "Inversion of AMSR‐E observations for land surface temperature estimation: 1. Methodology and evaluation with station temperature." Journal of Geophysical Research: Atmospheres 122.6 (2017): 3330-3347.', 'source_name': 'LST', 'standard_name': 'surface_temperature', 'units': 'K', 'url': 'http://data.globtemperature.info/'}
      orig_version :
      nan
      project_name :
      GlobTemperature
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2002-05-21
      url :
      http://data.globtemperature.info/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • latent_energy
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      48
      esa_cci_path :
      nan
      long_name :
      Latent Energy
      orig_attrs :
      {'comment': 'Latent heat flux from the surface.', 'long_name': 'Latent Energy', 'orig_attrs': {}, 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'LE', 'standard_name': 'surface_upward_latent_heat_flux', 'units': 'W m-2', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2015-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • leaf_area_index
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      73
      esa_cci_path :
      nan
      long_name :
      Effective Leaf Area Index
      orig_attrs :
      {'long_name': 'Effective Leaf Area Index', 'orig_attrs': {}, 'project_name': 'QA4ECV', 'source_name': 'Lai', 'standard_name': 'leaf_area_index', 'units': '1', 'url': 'http://www.qa4ecv.eu/'}
      orig_version :
      nan
      project_name :
      QA4ECV
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1982-01-05
      url :
      http://www.qa4ecv.eu/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • lrt_c
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      24
      esa_cci_path :
      nan
      long_name :
      Tropospheric Ozone Column (Lapse Rate)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropospheric ozone column (based on lapse rate definition) in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'lrt_c', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • lrt_p
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      16
      esa_cci_path :
      nan
      long_name :
      Tropopause Air Pressure (Lapse Rate)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'tropopause_air_pressure for the lapse rate tropopause', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'lrt_p', 'standard_name': 'tropopause_air_pressure', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'hPa', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • lwp
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      34
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Cloud Liquid Water Path
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'cloud liquid water path', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'orig_attrs': {}, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'lwp', 'spatial_resolution': '0.50 degree', 'standard_name': 'lwp', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'g/m2', 'url': 'http://www.dwd.de', 'valid_max': 32000.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • mask
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      46
      esa_cci_path :
      /neodc/esacci/sst/data/lt/Analysis/L4/v01.1/
      long_name :
      Sea/Land/Lake/Ice Field Composite Mask
      orig_attrs :
      {'Conventions': 'CF-1.5, Unidata Observation Dataset v1.0', 'Metadata_Conventions': 'Unidata Dataset Discovery v1.0', 'acknowledgment': 'Funded by ESA', 'cdm_data_type': 'grid', 'comment': 'WARNING Some applications are unable to properly handle signed byte values. If values are encountered > 127, please subtract 256 from this reported value', 'creator_email': 'science.leader@esa-sst-cci.org', 'creator_name': 'ESA SST CCI', 'creator_processing_institution': 'These data were produced at the Met Office as part of the ESA SST CCI project.', 'creator_url': 'http://www.esa-sst-cci.org', 'date_created': '20130309T132046Z', 'easternmost_longitude': 180.00001525878906, 'file_quality_level': 3, 'gds_version_id': '2.0', 'geospatial_lat_max': 90.0, 'geospatial_lat_min': -90.0, 'geospatial_lat_resolution': 0.05000000074505806, 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 180.0, 'geospatial_lon_min': -180.0, 'geospatial_lon_resolution': 0.05000000074505806, 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': -0.20000000298023224, 'geospatial_vertical_min': -0.20000000298023224, 'history': 'Created using OSTIA reanalysis system v2.0', 'id': 'OSTIA-ESACCI-L4-v01.1', 'institution': 'ESACCI', 'keywords': 'Oceans > Ocean Temperature > Sea Surface Temperature', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'license': 'GHRSST protocol describes data use as free and open', 'long_name': 'sea/land/lake/ice field composite mask', 'metadata_link': 'http://www.esa-cci.org', 'naming_authority': 'org.ghrsst', 'netcdf_version_id': '4.1.3', 'northernmost_latitude': 90.0, 'orig_attrs': {}, 'platform': 'ERS-<1,2>, Envisat, NOAA-<12,14,15,16,17,18>, MetOpA', 'processing_level': 'L4', 'product_version': '1.1', 'project': 'Climate Change Initiative - European Space Agency', 'publisher_email': 'science.leader@esa-sst-cci.org', 'publisher_name': 'ESACCI', 'publisher_url': 'http://www.esa-sst-cci.org', 'references': 'http://www.esa-sst-cci.org', 'sensor': 'ATSR, AATSR, AVHRR_GAC', 'source': 'ATSR<1,2>-ESACCI-L3U-v1.0, AATSR-ESACCI-L3U-v1.0, AVHRR<12,14,15,16,17,18>_G-ESACCI-L2P-v1.0, AVHRRMTA-ESACCI-L2P-v1.0, EUMETSAT_OSI-SAF-ICE-v1.1, EUMETSAT_OSI-SAF-ICE-v2.2', 'source_dir': '/neodc/esacci/sst/data/lt/Analysis/L4/v01.1', 'source_name': 'mask', 'source_version': 'v01.1', 'southernmost_latitude': -90.0, 'spatial_resolution': '0.05 degree', 'standard_name': 'mask', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention', 'start_time': '20100101T000000Z', 'stop_time': '20100101T235959Z', 'summary': 'OSTIA L4 product from the ESA SST CCI project, produced using OSTIA reanalysis system v2.0. Ice field corrected in v1.1 (v1.0 had ice from day-1). Static ice field between 20080101-20080229 and 20080501-20080521 also fixed in v1.1', 'time_coverage_duration': 'P1D', 'time_coverage_end': '20100101T235959Z', 'time_coverage_resolution': 'P1D', 'time_coverage_start': '20100101T000000Z', 'title': 'ESA SST CCI OSTIA L4 product', 'tracking_id': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'url': 'http://www.esa-sst-cci.org', 'uuid': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'valid_max': 31.0, 'valid_min': 1.0, 'westernmost_longitude': -180.0}
      orig_version :
      v01.1
      project_name :
      ESA Sea Surface Temperature Climate Change Initiative (ESA SST CCI)
      time_coverage_end :
      2010-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1991-09-02
      url :
      http://www.esa-sst-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • max_air_temperature_2m
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      6
      esa_cci_path :
      nan
      long_name :
      Maximum 2 Metre Air Temperature
      orig_attrs :
      {'comment': 'Air temperature at 2m from the ERA5 reanalysis product.', 'long_name': 'Maximum 2 metre air temperature', 'orig_attrs': {}, 'project_name': 'ERA5', 'references': '', 'source_name': 'max_air_temperature_2m', 'units': 'K', 'url': 'https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation'}
      orig_version :
      ERA5
      project_name :
      ERA5
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-05
      url :
      https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • min_air_temperature_2m
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      7
      esa_cci_path :
      nan
      long_name :
      Minimum 2 Metre Air Temperature
      orig_attrs :
      {'comment': 'Air temperature at 2m from the ERA5 reanalysis product.', 'long_name': 'Minimum 2 metre air temperature', 'orig_attrs': {}, 'project_name': 'ERA5', 'references': '', 'source_name': 'min_air_temperature_2m', 'units': 'K', 'url': 'https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation'}
      orig_version :
      ERA5
      project_name :
      ERA5
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-05
      url :
      https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • msr_flt
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      9
      esa_cci_path :
      nan
      long_name :
      Residual MSR-FLT (Stratospheric Part Partial)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'residual MSR-FLT_stratospheric_part partial ozone column in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'msr_flt', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • msr_lrt
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      11
      esa_cci_path :
      nan
      long_name :
      Residual MSR-LRT (Stratospheric Part Partial)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'residual MSR-LRT_stratospheric_part partial ozone column in mole per square meter', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'msr_lrt', 'standard_name': 'troposphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • net_ecosystem_exchange
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      49
      esa_cci_path :
      nan
      long_name :
      Net Ecosystem Exchange
      orig_attrs :
      {'comment': 'Net carbon exchange between the ecosystem and the atmopshere.', 'long_name': 'Net Ecosystem Exchange', 'orig_attrs': {}, 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'NEE', 'standard_name': 'net_primary_productivity_of_carbon', 'units': 'gC m-2 day-1', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2015-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • net_radiation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      50
      esa_cci_path :
      nan
      long_name :
      Net Radiation
      orig_attrs :
      {'comment': 'Net radiation to the surface', 'long_name': 'Net Radiation', 'orig_attrs': {}, 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'Rn', 'standard_name': 'surface_net_radiation_flux', 'units': 'W m-2', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2015-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • open_water_evaporation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      59
      esa_cci_path :
      nan
      long_name :
      Open-Water Evaporation
      orig_attrs :
      {'long_name': 'Open-water Evaporation', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Ew', 'standard_name': 'water_evaporation_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • ozone
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      72
      esa_cci_path :
      /neodc/esacci/ozone/data/total_columns/l3/merged/v0100/
      long_name :
      Mean Total Ozone Column in dobson units
      orig_attrs :
      {'comment': 'Atmospheric ozone based on the Ozone CCI data.', 'long_name': 'Mean total ozone column in dobson units', 'orig_attrs': {}, 'project_name': 'Ozone CCI', 'references': 'Laeng, A., et al. "The ozone climate change initiative: Comparison of four Level-2 processors for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)." Remote Sensing of Environment 162 (2015): 316-343.', 'source_name': 'atmosphere_mole_content_of_ozone', 'standard_name': 'atmosphere_mole_content_of_ozone', 'units': 'DU', 'url': 'http://www.esa-ozone-cci.org/'}
      orig_version :
      v0100
      project_name :
      Ozone CCI
      time_coverage_end :
      2011-06-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1996-03-09
      url :
      http://www.esa-ozone-cci.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • par
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      3
      esa_cci_path :
      nan
      long_name :
      Photosynthetically Active Radiation
      orig_attrs :
      {'long_name': 'Photosynthetically active radiation', 'orig_attrs': {}, 'project_name': 'BESS', 'references': 'Ryu, Y.*, Jiang, C., Kobayashi, H., & Detto, M. (2018). MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sensing of Environment, 204, 812-825', 'source_name': 'surface_downwelling_photosynthetic_radiative_flux_in_air', 'standard_name': 'surface_downwelling_photosynthetic_radiative_flux_in_air', 'units': 'W m-2', 'url': 'http://environment.snu.ac.kr/bess_rad/'}
      orig_version :
      15.10.2017
      project_name :
      BESS
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-03-01
      url :
      http://environment.snu.ac.kr/bess_rad/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • pardiff
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      1
      esa_cci_path :
      nan
      long_name :
      Diffuse Photosynthetically Active Radiation
      orig_attrs :
      {'long_name': 'Diffuse Photosynthetically active radiation', 'orig_attrs': {}, 'project_name': 'BESS', 'references': 'Ryu, Y.*, Jiang, C., Kobayashi, H., & Detto, M. (2018). MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sensing of Environment, 204, 812-825', 'source_name': 'surface_diffuse_downwelling_photosynthetic_radiative_flux_in_air', 'standard_name': 'surface_diffuse_downwelling_photosynthetic_radiative_flux_in_air', 'units': 'W m-2', 'url': 'http://environment.snu.ac.kr/bess_rad/'}
      orig_version :
      15.10.2017
      project_name :
      BESS
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-03-01
      url :
      http://environment.snu.ac.kr/bess_rad/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • potential_evaporation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      60
      esa_cci_path :
      nan
      long_name :
      Potential Evaporation
      orig_attrs :
      {'long_name': 'Potential Evaporation', 'orig_attrs': {}, 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Ep', 'standard_name': 'potential_water_evaporation_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • precipitation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      71
      esa_cci_path :
      nan
      long_name :
      Precipitation
      orig_attrs :
      {'comment': 'Precipitation based on the GPCP dataset.', 'long_name': 'Precip - RealTime [RT] (see documentation for more information)', 'orig_attrs': {}, 'project_name': 'GPCP', 'references': 'Adler, Robert F., et al. "The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present)." Journal of hydrometeorology 4.6 (2003): 1147-1167.', 'source_name': 'Precip', 'standard_name': 'precipitation_flux', 'units': 'mm/day', 'url': 'http://precip.gsfc.nasa.gov/'}
      orig_version :
      nan
      project_name :
      GPCP
      time_coverage_end :
      2015-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1980-01-05
      url :
      http://precip.gsfc.nasa.gov/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • precipitation_era5
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      5
      esa_cci_path :
      nan
      long_name :
      ERA5 Precipitation
      orig_attrs :
      {'comment': 'Total precipitation from the ERA5 reanalysis product.', 'long_name': 'ERA 5 Precipitation', 'orig_attrs': {}, 'project_name': 'ERA5', 'references': '', 'source_name': 'precipitation', 'units': 'K', 'url': 'https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation'}
      orig_version :
      ERA5
      project_name :
      ERA5
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-05
      url :
      https://confluence.ecmwf.int//display/CKB/ERA5+data+documentation
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • psurf
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      12
      esa_cci_path :
      nan
      long_name :
      Surface Air Pressure
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'surface_air_pressure', 'orig_attrs': {}, 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'psurf', 'standard_name': 'surface_air_pressure', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'hPa', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • root_moisture
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      61
      esa_cci_path :
      nan
      long_name :
      Root-Zone Soil Moisture
      orig_attrs :
      {'long_name': 'Root-Zone Soil Moisture', 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'SMroot', 'standard_name': 'soil_moisture_content', 'units': 'm3/m3', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • sea_ice_fraction
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      45
      esa_cci_path :
      /neodc/esacci/sst/data/lt/Analysis/L4/v01.1/
      long_name :
      Sea Ice Area Fraction
      orig_attrs :
      {'Conventions': 'CF-1.5, Unidata Observation Dataset v1.0', 'Metadata_Conventions': 'Unidata Dataset Discovery v1.0', 'acknowledgment': 'Funded by ESA', 'cdm_data_type': 'grid', 'comment': 'WARNING Some applications are unable to properly handle signed byte values. If values are encountered > 127, please subtract 256 from this reported value', 'creator_email': 'science.leader@esa-sst-cci.org', 'creator_name': 'ESA SST CCI', 'creator_processing_institution': 'These data were produced at the Met Office as part of the ESA SST CCI project.', 'creator_url': 'http://www.esa-sst-cci.org', 'date_created': '20130309T132046Z', 'easternmost_longitude': 180.00001525878906, 'file_quality_level': 3, 'gds_version_id': '2.0', 'geospatial_lat_max': 90.0, 'geospatial_lat_min': -90.0, 'geospatial_lat_resolution': 0.05000000074505806, 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 180.0, 'geospatial_lon_min': -180.0, 'geospatial_lon_resolution': 0.05000000074505806, 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': -0.20000000298023224, 'geospatial_vertical_min': -0.20000000298023224, 'history': 'Created using OSTIA reanalysis system v2.0', 'id': 'OSTIA-ESACCI-L4-v01.1', 'institution': 'ESACCI', 'keywords': 'Oceans > Ocean Temperature > Sea Surface Temperature', 'keywords_vocabulary': 'NASA Global Change Master Directory (GCMD) Science Keywords', 'license': 'GHRSST protocol describes data use as free and open', 'long_name': 'sea ice area fraction', 'metadata_link': 'http://www.esa-cci.org', 'naming_authority': 'org.ghrsst', 'netcdf_version_id': '4.1.3', 'northernmost_latitude': 90.0, 'platform': 'ERS-<1,2>, Envisat, NOAA-<12,14,15,16,17,18>, MetOpA', 'processing_level': 'L4', 'product_version': '1.1', 'project': 'Climate Change Initiative - European Space Agency', 'publisher_email': 'science.leader@esa-sst-cci.org', 'publisher_name': 'ESACCI', 'publisher_url': 'http://www.esa-sst-cci.org', 'references': 'http://www.esa-sst-cci.org', 'sensor': 'ATSR, AATSR, AVHRR_GAC', 'source': 'ATSR<1,2>-ESACCI-L3U-v1.0, AATSR-ESACCI-L3U-v1.0, AVHRR<12,14,15,16,17,18>_G-ESACCI-L2P-v1.0, AVHRRMTA-ESACCI-L2P-v1.0, EUMETSAT_OSI-SAF-ICE-v1.1, EUMETSAT_OSI-SAF-ICE-v2.2', 'source_dir': '/neodc/esacci/sst/data/lt/Analysis/L4/v01.1', 'source_name': 'sea_ice_fraction', 'source_version': 'v01.1', 'southernmost_latitude': -90.0, 'spatial_resolution': '0.05 degree', 'standard_name': 'sea_ice_area_fraction', 'standard_name_vocabulary': 'NetCDF Climate and Forecast (CF) Metadata Convention', 'summary': 'OSTIA L4 product from the ESA SST CCI project, produced using OSTIA reanalysis system v2.0. Ice field corrected in v1.1 (v1.0 had ice from day-1). Static ice field between 20080101-20080229 and 20080501-20080521 also fixed in v1.1', 'time_coverage_duration': 'P1D', 'time_coverage_end': '20100101T235959Z', 'time_coverage_resolution': 'P1D', 'time_coverage_start': '20100101T000000Z', 'title': 'ESA SST CCI OSTIA L4 product', 'tracking_id': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'units': '1', 'url': 'http://www.esa-sst-cci.org', 'uuid': '19b1f7a4-d8d1-44eb-9cfa-37cc33c4c2c1', 'valid_max': 100.0, 'valid_min': 0.0, 'westernmost_longitude': -180.0}
      orig_version :
      v01.1
      project_name :
      ESA Sea Surface Temperature Climate Change Initiative (ESA SST CCI)
      time_coverage_end :
      2010-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1991-09-02
      url :
      http://www.esa-sst-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • sensible_heat
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      51
      esa_cci_path :
      nan
      long_name :
      Sensible Heat
      orig_attrs :
      {'comment': 'Sensible heat flux from the surface', 'long_name': 'Sensible Heat', 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'H', 'standard_name': 'surface_upward_sensible_heat_flux', 'units': 'W m-2', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2015-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • snow_sublimation
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      62
      esa_cci_path :
      nan
      long_name :
      Snow Sublimation
      orig_attrs :
      {'long_name': 'Snow Sublimation', 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Es', 'standard_name': 'snow_sublimation_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • snow_water_equivalent
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      67
      esa_cci_path :
      nan
      long_name :
      Daily Snow Water Equivalent
      orig_attrs :
      {'certain_values': '-2 == mountains, -1 == water bodies, 0 == either SWE, or missing data in the southern hemisphere', 'comment': 'Grid cell fractional snow cover based on the Globsnow CCI product.', 'long_name': 'Daily Snow Water Equivalent', 'project_name': 'GlobSnow', 'references': 'Luojus, Kari, et al. "ESA DUE Globsnow-Global Snow Database for Climate Research." ESA Special Publication. Vol. 686. 2010.', 'source_name': 'SWE', 'units': 'mm', 'url': 'http://www.globsnow.info/'}
      orig_version :
      v2.0
      project_name :
      GlobSnow
      time_coverage_end :
      2012-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1980-01-05
      url :
      http://www.globsnow.info/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • soil_moisture
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      78
      esa_cci_path :
      /neodc/esacci/soil_moisture/data/daily_files/COMBINED/v04.2/
      long_name :
      Soil Moisture
      orig_attrs :
      {'comment': 'Soil moisture based on the SOilmoisture CCI project', 'long_name': 'Soil Moisture', 'project_name': 'SoilMoisture CCI', 'references': 'Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A.M., Wagner, W., McCabe, M.F., Evans, J.P., and van Dijk, A.I.J.M. (2012): Trend-preserving blending of passive and active microwave soil moisture retrievals; Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A.M., Wagner, W., van Dijk, A.I.J.M., McCabe, M.F., & Evans, J.P. (2011): Developing an improved soil moisture dataset by blending passive and active microwave satellite based retrievals. Hydrology and Earth System Sciences, 15, 425-436.', 'source_name': 'SoilMoisture', 'standard_name': 'soil_moisture_content', 'units': 'm3', 'url': 'http://www.esa-soilmoisture-cci.org'}
      orig_version :
      v04.2
      project_name :
      SoilMoisture CCI
      time_coverage_end :
      2014-01-29
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1980-01-05
      url :
      http://www.esa-soilmoisture-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • srex_mask
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      77
      esa_cci_path :
      nan
      long_name :
      Mask for SREX Regions
      orig_attrs :
      {'ds_method': 'MODE', 'long_name': 'Mask for SREX regions', 'source_name': 'layer', 'standard_name': 'srex_mask', 'units': '-'}
      orig_version :
      nan
      project_name :
      regionmask - SREX Regions
      time_coverage_end :
      1980-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1980-01-05
      url :
      https://regionmask.readthedocs.io/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • stemp
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      40
      esa_cci_path :
      /neodc/esacci/cloud/data/phase-2/L3C/MODIS-TERRA/v2.0/
      long_name :
      Surface Temperature
      orig_attrs :
      {'Conventions': 'CF-1.6,ACDD-1.3', 'cdm_data_type': 'Grid', 'comment': 'These data were produced at ESACCI as part of the ESA Cloud CCI project.', 'creator_email': 'contact.cloudcci@dwd.de', 'creator_name': 'Deutscher Wetterdienst', 'creator_url': 'http://www.dwd.de', 'date_created': '2016-04-25T17:07:07+0000', 'geospatial_lat_max': 89.75, 'geospatial_lat_min': -89.75, 'geospatial_lat_resolution': '0.50', 'geospatial_lat_units': 'degrees_north', 'geospatial_lon_max': 179.75, 'geospatial_lon_min': -179.75, 'geospatial_lon_resolution': '0.50', 'geospatial_lon_units': 'degrees_east', 'geospatial_vertical_max': '0.0', 'geospatial_vertical_min': '0.0', 'history': 'Dataset produced by DWDs CC4CL retrieval system installed at ECMWF in second phase of ESA Cloud CCI.', 'id': '200002-ESACCI-L3C_CLOUD-CLD_PRODUCTS-MODIS_TERRA-fv2.0.nc', 'institution': 'Deutscher Wetterdienst', 'keywords': 'EARTH SCIENCE > ATMOSPHERE > SATELLITES > CLOUDS > CLOUD PROPERTIES', 'keywords_vocabulary': 'GCMD Science Keywords, Version 8.1', 'license': 'ESA CCI Data Policy: free and open access', 'long_name': 'surface temperature', 'naming_authority': 'de.dwd', 'number_of_processed_orbits': 1516, 'platform': 'TERRA', 'product_version': '2.0', 'project': 'Climate Change Initiative - European Space Agency', 'references': 'http://www.esa-cloud-cci.info', 'sensor': 'MODIS', 'source': 'MODIS_TERRA_Collection 6', 'source_name': 'stemp', 'spatial_resolution': '0.50 degree', 'standard_name': 'stemp', 'standard_name_vocabulary': 'NetCDF Climate Forecast (CF) Metadata Convention version 18', 'summary': 'This dataset contains monthly Level-3 global cloud property products from satellite observations. Averaged onto a regular grid.', 'time_coverage_duration': 'P1M', 'time_coverage_end': '20000229T235959Z', 'time_coverage_resolution': 'P1M', 'time_coverage_start': '20000201T000000Z', 'title': 'ESA Cloud CCI Retrieval Products L3 Output File', 'tracking_id': '1b6a5bee-afad-43e5-a326-67a76df184a7', 'units': 'K', 'url': 'http://www.dwd.de', 'valid_max': 320.0, 'valid_min': 0.0}
      orig_version :
      v2.0
      project_name :
      ESA Cloud Climate Change Initiative (Cloud_cci)
      time_coverage_end :
      2014-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2000-01-29
      url :
      http://www.dwd.de
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • surface_moisture
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      63
      esa_cci_path :
      nan
      long_name :
      Surface Soil Moisture
      orig_attrs :
      {'long_name': 'Surface Soil Moisture', 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'SMsurf', 'standard_name': 'soil_moisture_content', 'units': 'mm3/mm3', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • terrestrial_ecosystem_respiration
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      52
      esa_cci_path :
      nan
      long_name :
      Terrestrial Ecosystem Respiration
      orig_attrs :
      {'comment': 'Total carbon release of the ecosystem through respiration.', 'long_name': 'Terrestrial Ecosystem Respiration', 'project_name': 'FLUXCOM', 'references': 'Tramontana, Gianluca, et al. "Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms." (2016).', 'source_name': 'TERall', 'standard_name': 'ecosystem_respiration_carbon_flux', 'units': 'gC m-2 day-1', 'url': 'http://www.fluxcom.org/'}
      orig_version :
      v1
      project_name :
      FLUXCOM
      time_coverage_end :
      2012-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2001-01-05
      url :
      http://www.fluxcom.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • totcol_assim
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      13
      esa_cci_path :
      nan
      long_name :
      Total Ozone Column (Assimilated TM5 data)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'total ozone column derived from assimilated TM5 data', 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'totcol_assim', 'standard_name': 'atmosphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • totcol_free
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      14
      esa_cci_path :
      nan
      long_name :
      Total Ozone Column (Assimilated TM5 data)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'total ozone column derived from assimilated TM5 data', 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'totcol_free', 'standard_name': 'atmosphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • totcol_msr
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      15
      esa_cci_path :
      nan
      long_name :
      Total Ozone Column (MSR data)
      orig_attrs :
      {'Conventions': 'CF-1.6', 'comment': 'The global tropospheric ozone column from 0 to 6 km is presented here. The column is derived by simultaneous assimlating ozone profiles of GOME-2 and OMI.', 'creator_email': 'peet@knmi.nl', 'creator_name': 'J.C.A. van Peet', 'creator_url': 'KNMI, http://www.kmnmi.nl/', 'institution': 'Royal Netherlands Meteorological Institute, KNMI', 'long_name': 'total ozone column derived from MSR data', 'project_name': 'Tropospheric ozone column', 'references': 'Jacob C. A. van Peet, Ronald J. van der A, Hennie M. Kelder, and Pieternel F. Levelt (2018),Simultaneous assimilation of ozone profiles from multiple UV-VIS satellite instruments, Atmospheric Chemistry and Physics, doi:10.5194/acp-18-1685-2018', 'source_name': 'totcol_msr', 'standard_name': 'atmosphere_mole_content_of_ozone', 'title': 'Tropospheric ozone columns from assimilated satellite data.', 'units': 'mol m-2', 'url': 'http://www.temis.nl/protocols/tropo.html'}
      orig_version :
      v.1.2.3.1
      project_name :
      ESA - Near-real time total ozone column (OMI)
      time_coverage_end :
      2011-12-31
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2008-01-05
      url :
      http://www.temis.nl/protocols/tropo.html
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • transpiration
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      64
      esa_cci_path :
      nan
      long_name :
      Transpiration
      orig_attrs :
      {'long_name': 'Transpiration', 'project_name': 'GLEAM', 'references': 'Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geoscientific Model Development, 10, 1903–1925, 2017.', 'source_name': 'Et', 'standard_name': 'transpiration_flux', 'units': 'mm/day', 'url': 'http://www.gleam.eu'}
      orig_version :
      Version 3.2
      project_name :
      GLEAM
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-05
      url :
      http://www.gleam.eu
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • water_mask
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      43
      esa_cci_path :
      /neodc/esacci/land_cover/data/water_bodies/v4.0/
      long_name :
      Terrestrial or Water Pixel Classification
      orig_attrs :
      {'long_name': 'Terrestrial or water pixel classification', 'project_name': 'Climate Change Initiative - European Space Agency', 'source_name': 'wb_class', 'standard_name': 'land_cover_lccs', 'units': '-', 'url': 'http://www.esa-landcover-cci.org'}
      orig_version :
      v4.0
      project_name :
      ESA Land Cover Climate Change Initiative (Land_Cover_cci)
      time_coverage_end :
      1980-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1980-01-05
      url :
      http://www.esa-landcover-cci.org
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • water_vapour
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      70
      esa_cci_path :
      nan
      long_name :
      Total Column Water Vapour
      orig_attrs :
      {'comment': 'Total column water vapour based on the GlobVapour CCI product.', 'long_name': 'Total Column Water Vapour', 'project_name': 'GlobVapour', 'references': 'Schneider, Nadine, et al. "ESA DUE GlobVapour water vapor products: Validation." AIP Conference Proceedings. Vol. 1531. No. 1. 2013.', 'source_name': 'tcwv_res', 'standard_name': 'atmosphere_mass_content_of_water_vapor', 'units': 'kg m-2', 'url': 'http://www.globvapour.info/'}
      orig_version :
      nan
      project_name :
      GlobVapour
      time_coverage_end :
      2008-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1996-01-05
      url :
      http://www.globvapour.info/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • white_sky_albedo
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      66
      esa_cci_path :
      nan
      long_name :
      White Sky Albedo for Visible Wavebands
      orig_attrs :
      {'comment': 'White sky albedo derived from the GlobAlbedo CCI project dataset', 'long_name': 'White Sky Albedo for Visible Wavebands', 'project_name': 'GlobAlbedo', 'references': 'Muller, Jan-Peter, et al. "The ESA GLOBALBEDO project for mapping the Earth’s land surface albedo for 15 years from European sensors." Geophysical Research Abstracts. Vol. 13. 2012.', 'source_name': 'BHR_VIS', 'standard_name': 'surface_albedo_white_sky', 'units': '-', 'url': 'http://www.globalbedo.org/'}
      orig_version :
      nan
      project_name :
      GlobAlbedo
      time_coverage_end :
      2012-01-05
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1998-01-05
      url :
      http://www.globalbedo.org/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • white_sky_albedo_avhrr
      (time, lat, lon)
      float32
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      75
      esa_cci_path :
      nan
      long_name :
      Bi-Hemisphere Reflectance Albedo - VIS band
      orig_attrs :
      {'comment': 'White sky albedo derived from the QA4ECV Albedo Product', 'long_name': 'Bi-Hemisphere Reflectance albedo - VIS band', 'project_name': 'QA4ECV - European Union Framework Program 7', 'source_name': 'BHR_VIS', 'standard_name': 'surface_albedo_white_sky', 'units': '1', 'url': 'http://www.qa4ecv.eu/'}
      orig_version :
      nan
      project_name :
      QA4ECV - European Union Framework Program 7
      time_coverage_end :
      2016-12-30
      time_coverage_resolution :
      P8D
      time_coverage_start :
      1982-01-05
      url :
      http://www.qa4ecv.eu/
      Array Chunk
      Bytes 7.06 GB 4.15 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float32 numpy.ndarray
      1440 720 1702
    • xch4
      (time, lat, lon)
      float64
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      42
      esa_cci_path :
      /neodc/esacci/ghg/data/obs4mips/crdp_3/CO2/v100/
      long_name :
      Column Average Dry-air Mole Fraction Methane
      orig_attrs :
      {'Conventions': 'CF-1.6', 'associated_files': 'obs4mips_co2_crdp3_v100.sav', 'cell_methods': 'time: mean', 'comment': 'Satellite retrieved column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2)', 'contact': 'maximilian.reuter@iup.physik.uni-bremen.de', 'creation_date': '20160303T111125Z', 'data_structure': 'grid', 'frequency': 'mon', 'institute_id': 'IUP', 'institution': 'Institute of Environmental Physics, University of Bremen', 'long_name': 'column-average dry-air mole fraction of atmospheric carbon dioxide', 'mip_specs': 'CMIP5', 'product': 'observations', 'project_id': 'obs4MIPs', 'project_name': 'Ozone CCI', 'realm': 'atmos', 'references': 'Laeng, A., et al. "The ozone climate change initiative: Comparison of four Level-2 processors for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)." Remote Sensing of Environment 162 (2015): 316-343.', 'source': 'ESA GHG CCI XCO2 CRDP3', 'source_id': 'XCO2_CRDP3', 'source_name': 'xch4', 'source_type': 'satellite_retrieval', 'standard_name': 'dry_atmosphere_mole_fraction_of_carbon_dioxide', 'tracking_id': '60972082-05c2-4a04-947a-99042c642c68', 'units': '1', 'url': 'http://www.esa-ghg-cci.org/'}
      orig_version :
      v100
      project_name :
      ESA Greenhouse Gases Climate Change Initiative (GHG_cci)
      time_coverage_end :
      2014-12-15
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-13
      url :
      http://www.esa-ghg-cci.org/
      Array Chunk
      Bytes 14.12 GB 8.29 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float64 numpy.ndarray
      1440 720 1702
    • xco2
      (time, lat, lon)
      float64
      dask.array<chunksize=(1, 720, 1440), meta=np.ndarray>
      ID :
      41
      esa_cci_path :
      /neodc/esacci/ghg/data/obs4mips/crdp_3/CO2/v100/
      long_name :
      Column Average Dry-air Mole Fraction Carbon Dioxide
      orig_attrs :
      {'Conventions': 'CF-1.6', 'associated_files': 'obs4mips_co2_crdp3_v100.sav', 'cell_methods': 'time: mean', 'comment': 'Satellite retrieved column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2)', 'contact': 'maximilian.reuter@iup.physik.uni-bremen.de', 'creation_date': '20160303T111125Z', 'data_structure': 'grid', 'frequency': 'mon', 'institute_id': 'IUP', 'institution': 'Institute of Environmental Physics, University of Bremen', 'long_name': 'column-average dry-air mole fraction of atmospheric carbon dioxide', 'mip_specs': 'CMIP5', 'product': 'observations', 'project_id': 'obs4MIPs', 'project_name': 'Ozone CCI', 'realm': 'atmos', 'references': 'Laeng, A., et al. "The ozone climate change initiative: Comparison of four Level-2 processors for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)." Remote Sensing of Environment 162 (2015): 316-343.', 'source': 'ESA GHG CCI XCO2 CRDP3', 'source_id': 'XCO2_CRDP3', 'source_name': 'xco2', 'source_type': 'satellite_retrieval', 'standard_name': 'dry_atmosphere_mole_fraction_of_carbon_dioxide', 'tracking_id': '60972082-05c2-4a04-947a-99042c642c68', 'units': '1', 'url': 'http://www.esa-ghg-cci.org/'}
      orig_version :
      v100
      project_name :
      ESA Greenhouse Gases Climate Change Initiative (GHG_cci)
      time_coverage_end :
      2014-12-15
      time_coverage_resolution :
      P8D
      time_coverage_start :
      2003-01-13
      url :
      http://www.esa-ghg-cci.org/
      Array Chunk
      Bytes 14.12 GB 8.29 MB
      Shape (1702, 720, 1440) (1, 720, 1440)
      Count 1703 Tasks 1702 Chunks
      Type float64 numpy.ndarray
      1440 720 1702
  • Metadata_conventions :
    Unidata Dataset Discovery v1.0
    acknowledgment :
    The ESDL team acknowledges all data providers!
    chunking :
    1x720x1440
    comment :
    none.
    contributor_name :
    Max Planck Institute for Biogeochemistry
    contributor_role :
    ESDL Science Lead
    creator_email :
    info@earthsystemdatalab.net
    creator_name :
    Brockmann Consult GmbH
    creator_url :
    www.earthsystemdatalab.net
    date_created :
    17.12.2018
    date_issued :
    19.12.2018
    date_modified :
    17.12.2018
    geospatial_lat_max :
    89.75
    geospatial_lat_min :
    -89.75
    geospatial_lon_max :
    179.75
    geospatial_lon_min :
    -179.75
    geospatial_resolution :
    1/4deg
    history :
    - processing with esdl cube v0.1 (https://github.com/esa-esdl/esdl-core/)
    id :
    v2.0.0
    institution :
    Brockmann Consult GmbH
    keywords :
    Earth Science, Geophysical Variables
    license :
    Please refer to individual variables
    naming_authority :
    Earth System Data Lab team
    processing_level :
    Level 4
    project :
    ESA Earth System Data Lab
    publisher_email :
    info@earthsystemdatalab.net
    publisher_name :
    Brockmann Consult GmbH & Max Planck Institute for Biogechemistry
    publisher_url :
    www.brockmann-consult.de
    standard_name_vocabulary :
    CF-1.7
    summary :
    This data set contains a data cube of Earth System variables created by the ESA project Earth System Data Lab.
    time_coverage_duration :
    P37Y
    time_coverage_end :
    30.12.2016
    time_coverage_resolution :
    P8D
    time_coverage_start :
    05.01.1980
    title :
    Earth System Data Cube
# again subset only the ones we require
variables = [
    'gross_primary_productivity',
    'soil_moisture'
]
cubes = datacube[variables]

cubes

And we're done. That's it, there's nothing more to it.

Experimental Regions

So we're going to be look

# Experiment Functions
from src.data.esdc import get_dataset
from src.features.spatial import select_region, get_spain, get_europe
from src.features.temporal import select_period, TimePeriod

# MATPLOTLIB Settings
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

# SEABORN SETTINGS
import seaborn as sns
sns.set_context(context='talk',font_scale=0.7)

import cartopy
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
def plot_xarray_on_map(da, borders=True, coastlines=True, **kwargs):
    """ Plot the LOCATION of an xarray object """

    # create the base layer
    fig = plt.figure(figsize=(12, 8))
    ax = fig.add_subplot(1, 1, 1, projection=cartopy.crs.Robinson())
    # ax = plt.axes(projection=cartopy.crs.Orthographic(mid_lon, mid_lat))

    vmin = kwargs.pop("vmin", None)
    vmax = kwargs.pop("vmax", None)
    cmap = kwargs.pop("cmap", None)
    cb_title = kwargs.pop("title", '')
    robust = kwargs.pop("robust", None)


    da.plot(
        ax=ax,
#         transform=cartopy.crs.PlateCarree(),
        vmin=vmin,
        vmax=vmax,
        cmap=cmap,
        robust=robust,
        cbar_kwargs={"shrink": 0.9, "label": cb_title},
    )

    ax.coastlines()
    ax.add_feature(cartopy.feature.BORDERS, linestyle=":")
    ax.add_feature(cartopy.feature.LAKES, facecolor=None)
    fig = plt.gcf()
    ax.outline_patch.set_visible(False)
    return fig, ax

Spain

Low Resolution

# Get DataCube
variable = 'gross_primary_productivity'
datacube = get_dataset(variable, 'low')


# subset datacube (spatially)
region = get_spain()
datacube = select_region(
    xr_data=datacube, bbox=region
)[variable]

# subset datacube (temporally)
period = TimePeriod(name="201007", start="July-2010", end="July-2010")
datacube = select_period(xr_data=datacube, period=period)

# Plot datacube
# fig, ax = plot_xarray_on_map(datacube.mean(dim='time'))
datacube.mean(dim='time').plot(vmin=0)
plt.tight_layout()
plt.savefig( FIG_PATH.joinpath('demos/spain_lo_gpp.png'))
/home/emmanuel/.conda/envs/rbig_eo/lib/python3.8/site-packages/dask/array/numpy_compat.py:40: RuntimeWarning: invalid value encountered in true_divide
  x = np.divide(x1, x2, out)

High Resolution

# Get DataCube
variable = 'gross_primary_productivity'
datacube = get_dataset(variable, 'high')


# subset datacube (spatially)
region = get_spain()
datacube = select_region(
    xr_data=datacube, bbox=region
)[variable]

# subset datacube (temporally)
period = TimePeriod(name="201007", start="July-2010", end="July-2010")
datacube = select_period(xr_data=datacube, period=period)

# Plot Datacube
# fig, ax = plot_xarray_on_map(datacube.mean(dim='time'))
datacube.mean(dim='time').plot(vmin=0)
plt.tight_layout()
plt.savefig( FIG_PATH.joinpath('demos/spain_hi_gpp.png'))
/home/emmanuel/.conda/envs/rbig_eo/lib/python3.8/site-packages/dask/array/numpy_compat.py:40: RuntimeWarning: invalid value encountered in true_divide
  x = np.divide(x1, x2, out)

Europe

# Get DataCube
variable = 'gross_primary_productivity'
datacube = get_dataset(variable, 'low')


# subset datacube (spatially)
region = get_europe()
datacube = select_region(
    xr_data=datacube, bbox=region
)[variable]

# subset datacube (temporally)
period = TimePeriod(name="201007", start="July-2010", end="July-2010")
datacube = select_period(xr_data=datacube, period=period)

# Plot datacube
# fig, ax = plot_xarray_on_map(datacube.mean(dim='time'))
datacube.mean(dim='time').plot(vmin=0)
plt.tight_layout()
plt.savefig( FIG_PATH.joinpath('demos/europe_lo_gpp.png'))
/home/emmanuel/.conda/envs/rbig_eo/lib/python3.8/site-packages/dask/array/numpy_compat.py:40: RuntimeWarning: invalid value encountered in true_divide
  x = np.divide(x1, x2, out)
# Get DataCube
variable = 'gross_primary_productivity'
datacube = get_dataset(variable, 'high')


# subset datacube (spatially)
region = get_europe()
datacube = select_region(
    xr_data=datacube, bbox=region
)[variable]

# subset datacube (temporally)
period = TimePeriod(name="201007", start="July-2010", end="July-2010")
datacube = select_period(xr_data=datacube, period=period)

# Plot datacube
# fig, ax = plot_xarray_on_map(datacube.mean(dim='time'))
datacube.mean(dim='time').plot(vmin=0)
plt.tight_layout()
plt.savefig( FIG_PATH.joinpath('demos/europe_hi_gpp.png'))
/home/emmanuel/.conda/envs/rbig_eo/lib/python3.8/site-packages/dask/array/numpy_compat.py:40: RuntimeWarning: invalid value encountered in true_divide
  x = np.divide(x1, x2, out)