Source
Error Propagation
Taylor Series Expansion
A Taylor series is representation of a function as an infinite sum of terms that are calculated from the values of the functions derivatives at a single point - Wiki
Often times we come across functions that are very difficult to compute analytically. Below we have the simple first-order Taylor series approximation.
Let's take some function f(\mathbf x) where \mathbf{x} \sim \mathcal{N}(\mu_\mathbf{x}, \Sigma_\mathbf{x}) described by a mean \mu_\mathbf{x} and covariance \Sigma_\mathbf{x} . The Taylor series expansion around the function f(\mathbf x) is:
\mathbf z = f(\mathbf x) \approx f(\mu_{\mathbf x}) + \frac{\partial f}{\partial \mathbf x} \bigg\vert_{\mathbf{x} = \mu_\mathbf{x}}\left( \mathbf x - \mu_{\mathbf x} \right)
Law of Error Propagation
This results in a mean and error covariance of the new distribution \mathbf z defined by:
\mu_{\mathbf z} = f(\mu_{\mathbf x})
\Sigma_\mathbf{z} = \nabla_\mathbf{x} f(\mu_{\mathbf x}) \; \Sigma_\mathbf{x} \; \nabla_\mathbf{x} f(\mu_{\mathbf x})^{\top}
Proof: Mean Function
Given the mean function:
\mathbb{E}[\mathbf{x}] = \frac{1}{N} \sum_{i=1} x_i
We can simply apply this to the first-order Taylor series function.
\begin{aligned}
\mu_\mathbf{z} &=
\mathbb{E}_{\mathbf{x}} \left[ f(\mu_{\mathbf x}) + \frac{\partial f}{\partial \mathbf x} \bigg\vert_{\mathbf{x} = \mu_\mathbf{x}}\left( \mathbf x - \mu_{\mathbf x} \right) \right] \\
&= \mathbb{E}_{\mathbf{x}} \left[ f(\mu_{\mathbf x}) \right] + \mathbb{E}_{\mathbf{x}} \left[ \frac{\partial f}{\partial \mathbf x} \bigg\vert_{\mathbf{x} = \mu_\mathbf{x}}\left( \mathbf x - \mu_{\mathbf x} \right) \right] \\
&= f(\mu_{\mathbf x}) +
\mathbb{E}_{\mathbf{x}} \left[ \frac{\partial f}{\partial \mathbf x} \bigg\vert_{\mathbf{x} = \mu_\mathbf{x}} \mathbf x \right]- \mathbb{E}_{\mathbf{x}} \left[ \frac{\partial f}{\partial \mathbf x} \bigg\vert_{\mathbf{x} = \mu_\mathbf{x}}\mu_{\mathbf x} \right] \\
&= f(\mu_{\mathbf x}) +
\frac{\partial f}{\partial \mathbf x} \bigg\vert_{\mathbf{x} = \mu_\mathbf{x}} \mu_\mathbf{x} - \frac{\partial f}{\partial \mathbf x} \bigg\vert_{\mathbf{x} = \mu_\mathbf{x}}\mu_{\mathbf x} \\
&= f(\mu_{\mathbf x}) \\
\end{aligned}
Proof: Variance Function
Given the variance function
\mathbb{V}[\mathbf{x}] = \mathbb{E}\left[ \mathbf{x} - \mu_\mathbf{x} \right]^2
\begin{aligned}
\sigma_\mathbf{z}^2
&=
\mathbb{E} \left[ f(\mu_\mathbf{x}) - \frac{\partial f}{\partial \mathbf{x}} \bigg\vert_{\mathbf{x}=\mu_\mathbf{x}} (\mathbf{x} - \mu_\mathbf{x}) - \mu_\mathbf{x} \right] \\
&=
\mathbb{E} \left[ \frac{\partial f}{\partial \mathbf{x}} \bigg\vert_{\mathbf{x}=\mu_\mathbf{x}} (\mathbf{x} - \mu_\mathbf{x})\right]^2 \\
&=
\left( \frac{\partial f}{\partial \mathbf{x}} \bigg\vert_{\mathbf{x}=\mu_\mathbf{x}} \right)^2 \mathbb{E}\left[ \mathbf{x} - \mu_\mathbf{x}\right]^2\\
&= \left( \frac{\partial f}{\partial \mathbf{x}} \bigg\vert_{\mathbf{x}=\mu_\mathbf{x}} \right)^2 \Sigma_\mathbf{x}
\end{aligned}
I've linked a nice tutorial for propagating variances below if you would like to go through the derivations yourself.
Resources
Essence of Calculus, Chapter 11 | Taylor Series - 3Blue1Brown - youtube
Introduction to Error Propagation: Derivation, Meaning and Examples - PDF
Statistical uncertainty and error propagation - Vermeer - PDF