Things to Consider :
Univariate --> Multivariate Spatially Independent --> Spatially Dependent Temporally Independent --> Temporally Dependent Stationary --> Non-Stationary Stationarity in Time Series ¶ See example .
Stationarity in Spatial Data ¶ See example .
Filtering ¶ First, we perform some sort of filtering procedure to remove ... from the spatiotemporal cube.
y ( x , t ) = F Filter [ y ; θ ] ( x , t ) , x ∈ Ω Globe ⊆ R D s t ∈ T Globe ⊆ R + \begin{aligned}
\boldsymbol{y}(\mathbf{x},t) = \boldsymbol{F}_\text{Filter}[\boldsymbol{y};\theta](\mathbf{x},t), && &&
\mathbf{x}\in\Omega_\text{Globe}\subseteq\mathbb{R}^{D_s} && &&
t\in\mathcal{T}_\text{Globe}\subseteq\mathbb{R}^+
\end{aligned} y ( x , t ) = F Filter [ y ; θ ] ( x , t ) , x ∈ Ω Globe ⊆ R D s t ∈ T Globe ⊆ R + In this case a kernel average of 3-5 days is applied.
Note :
Anomalies ¶ First, we need to calculate the climatology of our dataset which is the global spatial average over some defined reference period.
The equation for the climatology is given by:
Climatology Equation : y ˉ Climatology ( t ) = 1 N s ∑ n = 1 N s y ( x n , t ) Climatology Function : y ˉ Climatology : Ω Globe × T Reference → R D y Spatial Domain : x ∈ Ω Globe ⊆ R D s Temporal Domain : t ∈ T Reference ⊆ R + \begin{aligned}
\text{Climatology Equation}: && && \bar{y}_\text{Climatology}(t) &= \frac{1}{N_s}\sum_{n=1}^{Ns}\boldsymbol{y}(\mathbf{x}_n,t) \\
\text{Climatology Function}: && && \bar{y}_\text{Climatology}&: \Omega_\text{Globe}\times\mathcal{T}_\text{Reference} \rightarrow \mathbb{R}^{D_y} \\
\text{Spatial Domain}: && && \mathbf{x}&\in\Omega_\text{Globe}\subseteq\mathbb{R}^{D_s}\\
\text{Temporal Domain}: && && t&\in\mathcal{T}_\text{Reference}\subseteq\mathbb{R}^+
\end{aligned} Climatology Equation : Climatology Function : Spatial Domain : Temporal Domain : y ˉ Climatology ( t ) y ˉ Climatology x t = N s 1 n = 1 ∑ N s y ( x n , t ) : Ω Globe × T Reference → R D y ∈ Ω Globe ⊆ R D s ∈ T Reference ⊆ R + The reference period, T Reference \mathcal{T}_\text{Reference} T Reference , is some defined period which captures majority of the trends we can expect to see.
We also want this reference period to have minimal influence of anthropogenic activity.
So, given the defined period of 1850-2023
, we could take the reference period to be 1850-1880
(30 years).
To calculate the anomalies of the spatiotemporal cube, we subtract the climatology from the field.
Anomaly Equation : y ˉ Anomaly ( x , t ) = y ( x , t ) + y ˉ Climatology ( t ) Anomaly Function : y ˉ Anomaly : Ω Globe × T Globe → R D y Spatial Domain : x ∈ Ω Globe ⊆ R D s Temporal Domain : t ∈ T Globe ⊆ R + \begin{aligned}
\text{Anomaly Equation}: && && \boldsymbol{\bar{y}}_\text{Anomaly}(\mathbf{x},t) &= \boldsymbol{y}(\mathbf{x},t) + \boldsymbol{\bar{y}}_\text{Climatology}(t) \\
\text{Anomaly Function}: && && \boldsymbol{\bar{y}}_\text{Anomaly}&: \Omega_\text{Globe}\times\mathcal{T}_\text{Globe} \rightarrow \mathbb{R}^{D_y} \\
\text{Spatial Domain}: && && \mathbf{x}&\in\Omega_\text{Globe}\subseteq\mathbb{R}^{D_s}\\
\text{Temporal Domain}: && && t&\in\mathcal{T}_\text{Globe}\subseteq\mathbb{R}^+
\end{aligned} Anomaly Equation : Anomaly Function : Spatial Domain : Temporal Domain : y ˉ Anomaly ( x , t ) y ˉ Anomaly x t = y ( x , t ) + y ˉ Climatology ( t ) : Ω Globe × T Globe → R D y ∈ Ω Globe ⊆ R D s ∈ T Globe ⊆ R + What remains are the anomalies of the spatiotemporal field, y \boldsymbol{y} y .
Data Reduction ¶ Now, we perform a data reduction of the spatiotemporal field.
In the simplest case, we can take the spatial average of the field at every time step.
This will result in a single time series for the entire data cube.
Reduced Data Equation : y ~ anomaly ( t ) = 1 N s ∑ n = 1 N s y ˉ a n o m ( x , t ) Reduced Data Anomaly Function : y ~ anomaly : T Globe → R D y Temporal Domain : t ∈ T Globe ⊆ R + \begin{aligned}
\text{Reduced Data Equation}: && && \tilde{y}_\text{anomaly}(t) &= \frac{1}{N_s}\sum_{n=1}^{N_s}\boldsymbol{\bar{y}}_{anom}(\mathbf{x},t) \\
\text{Reduced Data Anomaly Function}: && && \tilde{y}_\text{anomaly} &: \mathcal{T}_\text{Globe} \rightarrow \mathbb{R}^{D_y} \\
\text{Temporal Domain}: && && t&\in\mathcal{T}_\text{Globe}\subseteq\mathbb{R}^+
\end{aligned} Reduced Data Equation : Reduced Data Anomaly Function : Temporal Domain : y ~ anomaly ( t ) y ~ anomaly t = N s 1 n = 1 ∑ N s y ˉ an o m ( x , t ) : T Globe → R D y ∈ T Globe ⊆ R + See my guide for more information on how we can calculate the spatial mean.
Note : there are other ways we can reduce the dimensionality of the data.
For example, we can use Empirical Orthogonal Functions (EO Fs) (a.k.a. PCA, POD).