Research Journal Sidebar
Initializing search
    jejjohnson/research_journal
    jejjohnson/research_journal
    • Overview
    • Definitions
    • Logistics
      • Explorers
        • Bayesian Neural Networks Working Group
        • Sidebar
          • Programming Exercises
          • Resources
          • Software
            • TensorFlow 2.0
            • Numpyro
            • Pyro
          • Explorers Group: TF 2.X and PyTorch for not so Dummies
          • Key Figures
          • Controversy
          • Videos
          • TF2.X and PyTorch
          • Index
          • Optimization
          • Papers
          • Neural Networks with Uncertainty
          • Resources
          • State-of-the-Art
          • Neural Networks with Uncertainty
          • Videos
        • StarSpots
      • My Appendices
        • Exponential Family of Distributions
        • Gaussian
        • Solving Hard Integral Problems
        • Bayesian: Language of Uncertainty
        • Kernel Density Estimation
        • KL Divergence
        • Mixture Models
        • Monte Carlo
        • PDF Estimation
        • PDF Estimation
        • Regression
        • Uniform Distribution
        • Variational Inference
          • Dropout
          • Literature
          • Regression master
        • Frameworks
        • Linear Algebra Tricks
        • Matrix tricks
        • Key Concepts
        • Splines
          • Automatic Differentiation
          • Change of Variables
          • [Identity Trick](https://www.shakirm.com/slides/MLSS2018-Madrid-ProbThinking.pdf)
          • Inverse Function Theorem
          • Jensens Inequality
        • Density Estimation
        • Conditional Density Estimation
        • Generative Modeling
        • Histograms
        • Logistic Distribution
          • Applications in Earth Science
          • Gaussinization
          • HouseHolder Flows
          • Normalizing Flows Literature
          • Continuous Mixture CDFs
          • RBIG for Spatial-Temporal Representation Analysis
          • RBIG 2.0 Ideas
          • Unscented Transformation
            • Climate
            • Demo: Gaussianization
            • Drought
            • Spatial temporal
            • Coupling Layers
            • Loss Functions
            • Marginal Gaussianization
            • Marginal Uniformization
            • Refactoring RBIG (RBIG 1.1)
            • Rotation
            • Gaussianization
            • Information Theory Measures
            • Literature Review
            • Related Methods
        • Basic GP
        • Sparse Gaussian Processes
        • GPs and Uncertain Inputs through the Ages
        • Uncertainty of GPs: Taylor Expansion
        • Variational GPs
        • Gaussian Dists. and GPs
        • SOTA GPs
        • Entropy
        • Exponential Family of Solutions
        • Gaussian Distribution
        • Information
        • Information
        • Information Bottleneck
        • Information Theory Measures Estimators
        • Information Theory Measures
        • KLD
        • K-Nearest Neighbors Estimator
        • Main
        • Mutual Information
        • Probability Density Function Estimators
        • Variation of Information
        • Other Distances
        • Kernel Measures of Similarity
          • Kernel Density Estimation
          • Overview
          • Kernels and Information Measures
          • Similarity Measures
        • Bisection
        • Orthogonal
        • Multi-Output
        • Rbig
        • Overview
        • What is Similarity?
        • Distances
        • HSIC
        • MMD
        • RV Coefficient
        • Taylor Diagram (1D Data)
        • Taylor Diagram (2D Data)
        • Variation of Information
      • My Blogs
        • Concrete Ideas
        • Blog Ideas
        • GPs and Uncertain Inputs through the Ages
      • Overview
        • Overview
        • Gaussian Approximations
          • Software
          • Basics
          • Literature Review
          • Next Steps
          • Error Propagation
          • Scratch
          • Linearized GP
          • Variational Strategies
            • eSVGP 1D Demo
            • eVGP 1D Demo
          • MCMC eGP
        • Index
        • Bayesian Neural Networks
        • Physics-Based Model
        • Overview
      • My Resources
      • Software
      • MKDocs Tips
      • My WorkFlow
      • Reproducibility
        • Machine Learning
        • Bayesian ML
        • Recommended Books
        • Class Notes
        • Deep Learning
        • Interpretable Machine Learning
        • Neural Networks
        • Physic-Informed Machine Learning
        • Statistics
        • Bisection Method
        • Python IDEs
        • Interesting Tidbits
          • Einsum
          • Large Scale
          • Tutorials
          • Documentation
          • Experiments
          • Git
          • Good Code
          • MakeFiles
          • Pip
          • Pythonic
          • Typing
          • Earth-Sci Stuff
          • Jax
          • Logging
          • Pandas
          • Parallel Programming
          • PathLib
          • Plotting Libraries
          • PyTorch
          • Scikit-Learn
          • SQL
          • Overview
          • JupyterLab + Slurm
          • VSCode
          • Deep Learning
          • Earth Science
          • Python Ecosystem
          • Standard
        • Cheat Sheets
        • Colab
        • Conda
        • Github
        • Markdown
        • Scikit-Learn
      • My Snippets
        • Arguments in Scripts
        • Loops
        • Makefile Arguments
        • Running Subsequent Scripts
        • Error in GPs in Sklearn
        • Cartesian Coordinates 2 Geocoordinates
        • XArray
        • PseudoCode
        • Tables
        • Figures
        • Anomaly Detection
        • MkDocs
          • Env jax
          • Install JupyterLab Stuff
          • Make
          • Setup py
        • Bisection
        • Efficient Euclidean Distance Calculation - Numpy Einsum
        • Add every n values in array
        • Optimized RBF kernel using `numexpr`
        • Embarrassingly Parallel Workloads
        • Hyperparameter Optimization
        • Large predict
        • Parallel Processing
        • Pipelines
        • Conda
        • My Typical Conda Environments
        • Dictionaries to Lists
        • Tricks with Lists
        • Named Tuples
        • Paths
        • My Setup File
        • Device Agnostic
        • Histograms in PyTorch
        • Interpolating in PyTorch
        • KeOps - Gaussian Kernel
        • Loops with TQDM
        • Multi kernel
        • PyTorch Tensors 2 Numpy Adaptors
        • Pytorch lightning
        • Rbf kernel
        • The Cholesky Decomposition
        • PyTest Tricks
        • Tips
        • gifs
          • Colorbars
          • Legend
          • Log Scale Plots
          • Defaults
          • Styling
          • Tif Files
      • My Talks
      • KERMES Meetup 2018
      • AGU 2019
      • Phi Week 2019
      • Phi Week 2019
      • Fast Friday Talk
      • KERMES Meetup 2020
      • Fast Friday Talk
      • My Thesis
      • Related Publications
      • Logistics
      • Thesis Outline
      • Quotes
      • Reproducibility
      • My Thesis: A Overview
      • Toc
          • Earth Science Setting
          • Machine Learning Setting
          • 1.3 thesis
          • Sensitivity
          • Similarity
          • Uncertainty
          • Hybrid Approaches
          • Kernel Methods
          • Neural Networks
          • Randomized
            • Overview
            • Density Estimation
            • Parametric Gaussianization
            • Normalizing Flows
            • Parametric
            • Rotation-Based Iterative Gaussianization (RBIG)
            • Information Theory
            • TODO
          • Sensitivity Applications
          • Similarity Applications
          • Uncertainty Applications
      • Tutorials
        • Earth Science Tools
        • Ideas
        • Esdc streaming
        • ideas
        • Jax
        • Bisection search
        • Classes
        • Ecosystem
        • Jax Tutorial Ideas
        • Init funcs
        • Jit
        • Optimizing Using Jax
        • VMAP
          • Bandwidth Approximation
          • Kernel Derivatives
          • Kernel Matrices
          • MonteCarlo
          • Pairwise
          • Resources
        • Using Jupyter Notebooks for VSCode Remote Computing
        • Semisupervised Manifold Alignment
        • 6 laplacian eigenmaps
        • NN from scratch
        • Refactoring
        • Sweeps using Weights and Biases
        • PyTorch Ideas
        • PyTorch Lightning
        • Copying Files
        • Documentation
        • Remote Machines: JupyterLab + VSCode
        • Slides
              • Index
              • Markdown Demo

    Sidebar

    • Home Page

    Literature * Papers

    Resources * Videos

    Explorers Groups * For not so Dummies

    Software * Overview * TensorFlow

    Previous Bayesian Neural Networks Working Group
    Next Programming Exercises
    Copyright © 2020 J. Emmanuel Johnson
    Made with Material for MkDocs