Exponential Family of Distributions¶
This is the close-form expression for the Sharma-Mittal entropy calculation for expontial families. The Sharma-Mittal entropy is a generalization of the Shannon, Rényi and Tsallis entropy measurements. This estimates Y using the maximum likelihood estimation and then uses the analytical formula for the exponential family.
Source Parameters, \theta
\theta = (\mu, \Sigma)
where \mu \in \mathbb{R}^{d} and \Sigma > 0
Natural Parameters, \eta
\eta = \left( \theta_2^{-1}\theta_1, \frac{1}{2}\theta_2^{-1} \right)
Expectation Parameters
Log Normalizer, F(\eta)
Also known as the log partition function.
F(\eta) = \frac{1}{4} tr( \eta_1^\top \eta_2^{-1} \eta) - \frac{1}{2} \log|\eta_2| + \frac{d}{2}\log \pi
Gradient Log Normalizer, \nabla F(\eta)
\nabla F(\eta) = \left( \frac{1}{2} \eta_2^{-1}\eta_1, -\frac{1}{2} \eta_2^{-1}- \frac{1}{4}(\eta_2^{-1}-\eta_1)(\eta_2^{-1}-\eta_1)^\top \right)
Log Normalizer, F(\theta)
Also known as the log partition function.
F(\theta) = \frac{1}{2} \theta_1^\top \theta_2^{-1} \theta + \frac{1}{2} \log|\theta_2|
Final Entropy Calculation
H = F(\eta) - \langle \eta, \nabla F(\eta) \rangle
Resources¶
- A closed-form expression for the Sharma-Mittal entropy of exponential families - Nielsen & Nock (2012) - Paper
- Statistical exponential families: A digest with flash cards - Paper
- The Exponential Family: Getting Weird Expectations! - Blog
- Deep Exponential Family - Code
- PyMEF: A Framework for Exponential Families in Python - Code | Paper