Skip to content

Exponential Family of Distributions

This is the close-form expression for the Sharma-Mittal entropy calculation for expontial families. The Sharma-Mittal entropy is a generalization of the Shannon, Rényi and Tsallis entropy measurements. This estimates Y using the maximum likelihood estimation and then uses the analytical formula for the exponential family.

Source Parameters, \theta

\theta = (\mu, \Sigma)

where \mu \in \mathbb{R}^{d} and \Sigma > 0

Natural Parameters, \eta

\eta = \left( \theta_2^{-1}\theta_1, \frac{1}{2}\theta_2^{-1} \right)

Expectation Parameters

Log Normalizer, F(\eta)

Also known as the log partition function.

F(\eta) = \frac{1}{4} tr( \eta_1^\top \eta_2^{-1} \eta) - \frac{1}{2} \log|\eta_2| + \frac{d}{2}\log \pi

Gradient Log Normalizer, \nabla F(\eta)

\nabla F(\eta) = \left( \frac{1}{2} \eta_2^{-1}\eta_1, -\frac{1}{2} \eta_2^{-1}- \frac{1}{4}(\eta_2^{-1}-\eta_1)(\eta_2^{-1}-\eta_1)^\top \right)

Log Normalizer, F(\theta)

Also known as the log partition function.

F(\theta) = \frac{1}{2} \theta_1^\top \theta_2^{-1} \theta + \frac{1}{2} \log|\theta_2|

Final Entropy Calculation

H = F(\eta) - \langle \eta, \nabla F(\eta) \rangle

Resources

  • A closed-form expression for the Sharma-Mittal entropy of exponential families - Nielsen & Nock (2012) - Paper
  • Statistical exponential families: A digest with flash cards - Paper
  • The Exponential Family: Getting Weird Expectations! - Blog
  • Deep Exponential Family - Code
  • PyMEF: A Framework for Exponential Families in Python - Code | Paper