KL Divergence¶
Typical:
\text{KL}\left[ q(\mathbf x) || \mathcal{P}(\mathbf x)\right] =
\int_\mathcal{X} q(\mathbf x) \log \frac{\mathcal{P}(\mathbf x)}{q(\mathbf x)} d\mathbf x
VI:
\text{KL}\left[ q(\mathbf x) || \mathcal{P}(\mathbf x)\right] = -
\int_\mathcal{X} q(\mathbf x) \log \frac{\mathcal{P}(\mathbf x)}{q(\mathbf x)} d\mathbf x
Positive and Reverse KL¶
- Density Ratio Estimation for KL Divergence Minimization between Implicit Distributions - Blog Resources:
- YouTube
- Aurelien Geron - Short Intro to Entropy, Cross-Entropy and KL-Divergence
- Ben Lambert - Through Secret Codes
- Zhoubin - Video > A nice talk where he highlights the asymptotic conditions for MLE. The proof is sketched using the minimization of the KLD function.
- Blog
- Anna-Lena Popkes
- KLD Explained
- KLD for ML
- Reverse Vs Forward KL
- KL-Divergence as an Objective Function
- NF Slides (MLE context)
- Edward
- Class Notes
- Stanford - MLE | Consistency and Asymptotic Normality of the MLE | Fisher Information, Cramer-Raw LB | MLE Model Mispecification
- Code
- KLD py
- NumPy/SciPy Recipes