Skip to content

Continuous Mixture CDFs

We take K Logistics.

x \rightarrow \sigma^{-1}\left[ \text{MixLogCDF}_\theta(x) \right] \cdot \exp(a) + b,

where \theta=[\pi, \mu, \beta] are the mixture params.

\text{MixLogCDF}_\theta(x) = \sum_{i=1}^K \pi_i \sigma((x-\mu_i) \cdot \exp(-\beta_i))

Domain

\sigma^{-1}(p) \rightarrow \alpha \in \mathbf{R}^{+}, p\in \mathcal{U}([0,1])

CDF Function

F_\theta(x) = \sigma^{-1}\left( \sum_{j=1}^K \pi_j \sigma(\frac{(x-\mu_i)}{\beta_j} \right)

Source: Flow++


Code Structure

Forward Transform

  1. Mixture Log CDF(x)
  2. Logit Function
  3. Mixture Log PDF

Inverse Transformation

  1. Sigmoid Function
  2. Mixture Inverse CDF
  3. Mixture Log PDF

Mixture of Logistics Coupling Layer


Resources


Literature

Relevant

Variational AutoEncoder with Optimizing Gaussian Mixture Model Priors - Guo et al. (2020) - PDF

Variational inference with Gaussian mixture model and householder flow - Liu et. al. (2018) - ...