Demo: Gaussianization
Data
RBIG Model
Initialize Model
# rbig parameters
n_layers = 1
rotation_type = 'PCA'
random_state = 123
zero_tolerance = 100
base = 'gauss'
# initialize RBIG Class
rbig_clf = RBIG(
n_layers=n_layers,
rotation_type=rotation_type,
random_state=random_state,
zero_tolerance=zero_tolerance,
base=base
)
Fit Model to Data
# run RBIG model
rbig_clf.fit(X);
Visualization
1. Marginal Gaussianization
# rotation matrix V (N x F)
V = rbig_clf.rotation_matrix[0]
# perform rotation
data_marg_gauss = X @ V
2. Rotation