Logistic Distribution¶
Cheat Sheet¶
PDF Logistic Distribution
f(x) = \frac{\exp(-x)}{(1 + \exp(-x))^2} = \frac{\exp(-z)}{\sigma(1 + \exp(-z))^2}
where z = \frac{(x-\mu)}{\sigma}.
- Support: (-\infty, \infty)
CDF Logistic Distribution
F(x) = \frac{1}{1 + \exp(-x)} = \frac{1}{1 + \exp(-z)}
where z = \frac{(x-\mu)}{\sigma}.
- Support: (-\infty, \infty) \rightarrow [0, 1]
Quantile Function Logistic Distribution
F^{-1}(x) = \log\left(\frac{p}{1-p}\right) = \mu + \sigma_{\log} \log \left( \frac{p}{1-p} \right)
where p \sim \mathcal{U}([0,1]).
Inverse sampling
Log SoftMax
\text{LogSoftmax}(x_i) = \log \left( \frac{\exp(x_i)}{\sum_j \exp(x_i)} \right)
PyTorch Function - Functional.log_softmax
Sigmoid
\text{Sigmoid}(x) = \frac{1}{1 +\exp(-x)}
PyTorch Function - Functional.sigmoid
Log Sigmoid
\text{LogSigmoid}(x) = \log \left( \frac{1}{1 +\exp(-x)} \right)
PyTorch Function - Functional.logsigmoid
Log Sum Exponential
\text{LogSumExp}(x)_i = \log \sum_j \exp(x_{ij})
PyTorch Function - torch.logsumexp
SoftPlus
\text{SoftPlus}(x) = \frac{1}{\beta}\log \left(1 + \exp(\beta x) \right)
- PyTorch Function -
Function.softplus