Skip to content
Source

Maximum Mean Discrepancy (MMD)

The Maximum Mean Discrepency (MMD) measurement is a distance measure between feature means.

Idea

This is done by taking the between dataset similarity of each of the datasets individually and then taking the cross-dataset similarity.


Formulation

\begin{aligned} MMD^2(P,Q) &= ||\mu_P - \mu_Q||_\mathcal{F}^2 \\ &= \mathbb{E}_{\mathcal{X} \sim P}\left[ k(x,x')\right] + \mathbb{E}_{\mathcal{Y} \sim Q}\left[ k(y,y')\right] - 2 \mathbb{E}_{\mathcal{X,Y} \sim P,Q}\left[ k(x,y)\right] \end{aligned}

Proof

\begin{aligned} ||\mu_P - \mu_Q||_\mathcal{F}^2 &= \langle \mu_P - \mu_Q, \mu_P - \mu_Q \rangle_\mathcal{F} \\ &= \langle \mu_P, \mu_P \rangle_\mathcal{F} + \langle \mu_Q, \mu_Q \rangle_\mathcal{F} - 2 \langle \mu_P,\mu_Q \rangle_\mathcal{F} \\ &= \mathbb{E}_{\mathcal{X} \sim P} \left[ \mu_Q(x) \right] + \mathbb{E}_{\mathcal{Y} \sim Q} \left[ \mu_P(y) \right] - 2 \mathbb{E}_{\mathcal{X} \sim P, Y \sim Q} \left[ \mu_P(x) \right] ??? \\ &= \mathbb{E}_{\mathcal{X} \sim P} \langle \mu_P, \varphi(x) \rangle_\mathcal{F} + \mathbb{E}_{\mathcal{Y} \sim Q} \langle \mu_Q, \varphi(y) \rangle_\mathcal{F} - 2 ... ??? \\ &= \mathbb{E}_{\mathcal{X} \sim P} \langle \mu_P, k(x, \cdot) \rangle_\mathcal{F} + \mathbb{E}_{\mathcal{Y} \sim Q} \langle \mu_Q, k(y, \cdot) \rangle_\mathcal{F} - 2 ... ??? \\ &= \mathbb{E}_{\mathcal{X} \sim P} \left[ k(x,x') \right] + \mathbb{E}_{\mathcal{Y} \sim Q} \left[ k(y,y') \right] - 2 \mathbb{E}_{\mathcal{X,Y} \sim P,Q } \left[ k(x,y) \right] \end{aligned}

Kernel Trick

Let k(X,Y) = \langle \varphi(x), \varphi(y) \rangle_\mathcal{H}:

\begin{aligned} \text{MMD}^2(P, Q) &= || \mathbb{E}_{X \sim P} \varphi(X) - \mathbb{E}_{Y \sim P} \varphi(Y) ||^2_\mathcal{H} \\ &= \langle \mathbb{E}_{X \sim P} \varphi(X), \mathbb{E}_{X' \sim P} \varphi(X')\rangle_\mathcal{H} + \langle \mathbb{E}_{Y \sim Q} \varphi(Y), \mathbb{E}_{Y' \sim Q} \varphi(Y')\rangle_\mathcal{H} - 2 \langle \mathbb{E}_{X \sim P} \varphi(X), \mathbb{E}_{Y' \sim Q} \varphi(Y')\rangle_\mathcal{H} \end{aligned}

Source: Stackoverflow


Empirical Estimate

$$ \begin{aligned} \widehat{\text{MMD}}^2 &= \frac{1}{n(n-1)} \sum_{i\neq j}^N k(x_i, x_j) + \frac{1}{n(n-1)} \sum_{i\neq j}^N k(y_i, y_j) - \frac{2}{n^2} \sum_{i,j}^N k(x_i, y_j)

\end{aligned} $$

Code

# Term 1
c1 = 1 / ( m * (m - 1))
A = np.sum(Kxx - np.diag(np.diagonal(Kxx)))

# Term II
c2 = 1 / (n * (n - 1))
B = np.sum(Kyy - np.diag(np.diagonal(Kyy)))

# Term III
c3 = 1 / (m * n)
C = np.sum(Kxy)

# estimate MMD
mmd_est = c1 * A + c2 * B - 2 * c3 * C

Sources


Equivalence

Euclidean Distance

Let's assume that \mathbf{x,y} come from two distributions, so\mathbf{x} \sim \mathbb{P} and \mathbf{x} \sim \mathbb{Q}. We can write the MMD as norm of the difference between the means in feature spaces.

\text{D}_{ED}(\mathbb{P,Q}) = ||\mu_\mathbf{x} - \mu_\mathbf{y}||^2_F = ||\mu_\mathbf{x}||^2_F + ||\mu_\mathbf{y}||^2_F - 2 \langle \mu_\mathbf{x}, \mu_\mathbf{y}\rangle_F

Empirical Estimation

This is only good for Gaussian kernels. But we can empirically estimate this as:

\text{D}_{ED}(\mathbb{P,Q}) = \frac{1}{N_x^2} \sum_{i=1}^{N_x}\sum_{j=1}^{N_x} \text{G}(\mathbf{x}_i, \mathbf{x}_j) + \frac{1}{N_y^2} \sum_{i=1}^{N_y}\sum_{j=1}^{N_y} \text{G}(\mathbf{y}_i, \mathbf{y}_j) - 2 \frac{1}{N_x N_y} \sum_{i=1}^{N_x}\sum_{j=1}^{N_y} \text{G}(\mathbf{x}_i, \mathbf{y}_j)

where G is the Gaussian kernel with a standard deviation of \sigma.

  • Information Theoretic Learning: Renyi's Entropy and Kernel Perspectives - Principe

KL-Divergence

This has some alternative interpretation that is similar to the Kullback-Leibler Divergence. Remember, the MMD is the distance between the joint distribution P=\mathbb{P}_{x,y} and the product of the marginals Q=\mathbb{P}_x\mathbb{P}_y.

\text{MMD}(P_{XY},P_X P_Y, \mathcal{H}_k) = || \mu_{PQ} - \mu_{P}\mu_{Q}||

This is similar to the KLD which has a similar interpretation in terms of the Mutual information: the difference between the joint distribution P(x,y) and the product of the marginal distributions p_x p_y.

I(X,Y) = D_{KL} \left[ P(x,y) || p_x p_y \right]

Variation of Information

In informaiton theory, we have a measure of variation of information (aka the shared information distance) which a simple linear expression involving mutual information. However, it is a valid distance metric that obeys the triangle inequality.

\text{VI}(X,Y) = H(X) + H(Y) - 2 I (X,Y)

where H(X) is the entropy of \mathcal{X} and I(X,Y) is the mutual information between \mathcal{X,Y}.

Properties

  • \text{VI}(X,Y) \geq 0
  • \text{VI}(X,Y) = 0 \implies X=Y
  • \text{VI}(X,Y) = d(Y,X)
  • \text{VI}(X,Z) \leq d(X,Y) + d(Y,Z)

HSIC

Similar to the KLD interpretation, this formulation is equivalent to the Hilbert-Schmidt Independence Criterion. If we think of the MMD distance between the joint distribution & the product of the marginals then we get the HSIC measure.

\begin{aligned} \text{MMD}^2(P_{XY}, P_XP_Y; \mathcal{H}_k) &= ||\mu_{\mathbb{P}_{XY}} - \mu_{P_XP_Y}|| \end{aligned}

which is the exact formulation for HSIC.

\begin{aligned} \text{MMD}^2(P_{XY}, P_XP_Y; \mathcal{H}_k) &= \text{HSIC}^2(P_{XY}; \mathcal{F}, \mathcal{G}) \end{aligned}

where we have some equivalences.

Proof

First we need to do some equivalences. First the norm of two feature spaces \varphi(\cdot, \cdot) is the same as the kernel of the cross product.

\begin{aligned} \langle \varphi(x,y), \varphi(x,y) \rangle_\mathcal{F} &= k \left((x,y),(x',y')\right) \end{aligned}

The second is the equivalence of the kernel of the cross-product of \mathcal{X,Y} is equal to the multiplication of the respective kernels for \mathcal{X,Y}. So, let's say we have a kernel k on dataset \mathcal{X} in the feature space \mathcal{F}. We also have a kernel k on dataset \mathcal{Y} with feature space \mathcal{G}. The kernel k on the \mathcal{X,Y} pairs are similar.

\begin{aligned} k\left((x,y),(x',y')\right) &= k(x,x')\,k(y,y') \\ \end{aligned}

Resources