Skip to article frontmatterSkip to article content

Probabilistic PCA

CSIC
UCM
IGEO

Context

We are given some measurements, y\boldsymbol{y}, which are sparse.

Dataset:Dtr={yn}n=1N,ynRD\begin{aligned} \text{Dataset}: && && \mathcal{D}_{tr} = \left\{ \boldsymbol{y}_n\right\}_{n=1}^{N}, && && \boldsymbol{y}_n\in\mathbb{R}^{D} \end{aligned}

Assumption

Measurements:y=y(s,t),y:RDs×R+RDyTrue Signal:u=u(s,t),u:RDs×R+RDuLatent Variable:z=z(s,t),z:RDs×R+RDz\begin{aligned} \text{Measurements}: && && \boldsymbol{y} &= \boldsymbol{y}(\boldsymbol{s},t), && && \boldsymbol{y}:\mathbb{R}^{D_s}\times\mathbb{R}^+ \rightarrow\mathbb{R}^{D_y} \\ \text{True Signal}: && && \boldsymbol{u} &= \boldsymbol{u}(\boldsymbol{s},t), && && \boldsymbol{u}:\mathbb{R}^{D_s}\times\mathbb{R}^+ \rightarrow\mathbb{R}^{D_u} \\ \text{Latent Variable}: && && \boldsymbol{z} &= \boldsymbol{z}(\boldsymbol{s},t), && && \boldsymbol{z}:\mathbb{R}^{D_s}\times\mathbb{R}^+ \rightarrow\mathbb{R}^{D_z} \end{aligned}

Joint Distribution

p(y,u,z,θ)=p(yu,θ)p(uz,θ)p(zθ)p(θ)p(y,u,z,\theta) = p(y|u,\theta)p(u|z,\theta)p(z|\theta)p(\theta)

Process Relationships

Measurements:yp(yu,θ)True Signal:up(uz,θ)Generative Model:zp(zθ)Parameters:θp(θ)\begin{aligned} \text{Measurements}: && && \boldsymbol{y} &\sim p(\boldsymbol{y}|\boldsymbol{u},\boldsymbol{\theta}) \\ \text{True Signal}: && && \boldsymbol{u} &\sim p(\boldsymbol{u}|\boldsymbol{z},\boldsymbol{\theta}) \\ \text{Generative Model}: && && \boldsymbol{z} &\sim p(\boldsymbol{z}|\boldsymbol{\theta}) \\ \text{Parameters}: && && \boldsymbol{\theta} &\sim p(\boldsymbol{\theta}) \\ \end{aligned}

Example

Interpolation Operator:y=h(u;θ)+εy,εyN(0,Σy)Generative Model:u=T(z;θ)+εu,εuN(0,Σu)Latent Variable:z=μz+εz,εzN(0,Σz)\begin{aligned} \text{Interpolation Operator}: && && \boldsymbol{y} &= \boldsymbol{h}(\boldsymbol{u};\boldsymbol{\theta}) + \boldsymbol{\varepsilon}_y, && && \boldsymbol{\varepsilon}_y \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma_y}) \\ \text{Generative Model}: && && \boldsymbol{u} &= \boldsymbol{T}(\boldsymbol{z};\boldsymbol{\theta}) + \boldsymbol{\varepsilon}_u, && && \boldsymbol{\varepsilon}_u \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma_u}) \\ \text{Latent Variable}: && && \boldsymbol{z} &= \boldsymbol{\mu_z} + \boldsymbol{\varepsilon_z}, && && \boldsymbol{\varepsilon_z}\sim\mathcal{N}(0,\boldsymbol{\Sigma_z}) \end{aligned}

Formulation

Measurement Model

yN(yh(u,θh),Σy)\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{y}\mid\boldsymbol{h}(\boldsymbol{u},\boldsymbol{\theta}_h), \boldsymbol{\Sigma_y})

where θ={θh,Σy}\boldsymbol{\theta} =\{ \boldsymbol{\theta}_h, \boldsymbol{\Sigma_y}\} where the parameters for this model and h\boldsymbol{h} is the interpolation operator.

QoI Generative Model

uN(uWz+μ,Σu)\boldsymbol{u} \sim \mathcal{N}(\boldsymbol{u}\mid\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \boldsymbol{\Sigma_u})

where θ={W,μ,Σu}\boldsymbol{\theta} =\{ \mathbf{W},\boldsymbol{\mu}, \boldsymbol{\Sigma_u}\} where the parameters for this model.

Latent Variable Model

zN(zμz,Σz)\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{z}\mid\boldsymbol{\mu_z}, \boldsymbol{\Sigma_z})

where θ={μz,Σz}\boldsymbol{\theta} =\{ \boldsymbol{\mu_z}, \boldsymbol{\Sigma_z}\} where the parameters for this model.


Joint Distribution

[uz]N([μuμz],[WW+ΣuWWΣz],)\begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{z} \end{bmatrix} \sim \mathcal{N} \left( \begin{bmatrix} \boldsymbol{\mu_u} \\ \boldsymbol{\mu_z} \end{bmatrix}, \begin{bmatrix} \mathbf{WW}^\top+\boldsymbol{\Sigma_u} && \mathbf{W} \\ \mathbf{W}^\top && \mathbb{\Sigma_z} \end{bmatrix}, \right)

Posterior Distributions

We have the posterior distribution for the QoI, u\boldsymbol{u}.

p(uz;θ)=N(uμuz,Σuz)p(\boldsymbol{u}|\boldsymbol{z};\boldsymbol{\theta}) = \mathcal{N}\left(\boldsymbol{u}\mid\boldsymbol{\mu_{u|z}},\boldsymbol{\Sigma_{u|z}}\right)

where:

μuz=μu+WΣz1(zμz)Σuz=Σu+WΣu1W\begin{aligned} \boldsymbol{\mu_{u|z}} &= \boldsymbol{\mu_u} + \mathbf{W}\boldsymbol{\Sigma_z}^{-1}(\boldsymbol{z} - \boldsymbol{\mu_z}) \\ \boldsymbol{\Sigma_{u|z}} &= \boldsymbol{\Sigma_u} + \mathbf{W}\boldsymbol{\Sigma_u}^{-1}\mathbf{W}^\top \\ \end{aligned}

We have the posterior distribution for the latent space, z\boldsymbol{z}.

q(zu;θ)=N(zμzu,Σzu)q(\boldsymbol{z}|\boldsymbol{u};\boldsymbol{\theta}) = \mathcal{N}\left(\boldsymbol{z}\mid\boldsymbol{\mu_{z|u}},\boldsymbol{\Sigma_{z|u}}\right)

where:

μzu=μz+W(WW+Σu)1(uμu)Σzu=Σz+W(WW+Σu)1W\begin{aligned} \boldsymbol{\mu_{z|u}} &= \boldsymbol{\mu_z} + \mathbf{W}^\top \left(\mathbf{WW}^\top + \boldsymbol{\Sigma_u}\right)^{-1} (\boldsymbol{u} - \boldsymbol{\mu_u}) \\ \boldsymbol{\Sigma_{z|u}} &= \boldsymbol{\Sigma_z} + \mathbf{W}^\top \left(\mathbf{WW}^\top + \boldsymbol{\Sigma_u}\right)^{-1} \mathbf{W}^\top \\ \end{aligned}

Marginal Likelihood

p(u)=p(uz)p(z)dzp(\boldsymbol{u}) = \int p(\boldsymbol{u}|\boldsymbol{z})p(\boldsymbol{z})d\boldsymbol{z}