Context¶
We are given some measurements, y, which are sparse.
Dataset:Dtr={yn}n=1N,yn∈RD Assumption
Measurements:True Signal:Latent Variable:yuz=y(s,t),=u(s,t),=z(s,t),y:RDs×R+→RDyu:RDs×R+→RDuz:RDs×R+→RDz Joint Distribution
p(y,u,z,θ)=p(y∣u,θ)p(u∣z,θ)p(z∣θ)p(θ) Process Relationships
Measurements:True Signal:Generative Model:Parameters:yuzθ∼p(y∣u,θ)∼p(u∣z,θ)∼p(z∣θ)∼p(θ) Example
Interpolation Operator:Generative Model:Latent Variable:yuz=h(u;θ)+εy,=T(z;θ)+εu,=μz+εz,εy∼N(0,Σy)εu∼N(0,Σu)εz∼N(0,Σz)
Measurement Model
y∼N(y∣h(u,θh),Σy) where θ={θh,Σy} where the parameters for this model and h is the interpolation operator.
QoI Generative Model
u∼N(u∣Wz+μ,Σu) where θ={W,μ,Σu} where the parameters for this model.
Latent Variable Model
z∼N(z∣μz,Σz) where θ={μz,Σz} where the parameters for this model.
Joint Distribution¶
[uz]∼N([μuμz],[WW⊤+ΣuW⊤WΣz],)
Posterior Distributions¶
We have the posterior distribution for the QoI, u.
p(u∣z;θ)=N(u∣μu∣z,Σu∣z) where:
μu∣zΣu∣z=μu+WΣz−1(z−μz)=Σu+WΣu−1W⊤ We have the posterior distribution for the latent space, z.
q(z∣u;θ)=N(z∣μz∣u,Σz∣u) where:
μz∣uΣz∣u=μz+W⊤(WW⊤+Σu)−1(u−μu)=Σz+W⊤(WW⊤+Σu)−1W⊤
Marginal Likelihood¶
p(u)=∫p(u∣z)p(z)dz