Made with MyST
Modern 4DVar
Modern 4DVar
Content License: Creative Commons Attribution 4.0 International (CC-BY-4.0)Credit must be given to the creator

Data Assimilation

CNRS
MEOM
Model Representations
Space & Time
Model Representations
Parameterized Model
  • Start Here
  • Framework
  • Objectives
  • Components/Elements
  • Relationships
  • Graphical Representation
  • Estimation Problems
  • Data Representations
  • Overview
  • Geometry
  • Continuous
  • Discrete
  • Parameterized
  • Heterogeneous
  • Geoscience
  • Model Representations
  • Overview
  • Operators
  • Space & Time
  • Data Assimilation
  • Parameterized Model
  • Inference
  • Overview
  • Bayes For Inference/Learning
  • Variational Inference
  • Optimization
  • Bayesian Learning Rule
  • Bi-Level Optimization
  • Meta-Learning
  • Physics-Inspired
  • Overview
  • Data
  • Model Architecture
  • Loss
  • Uncertainty
  • Uncertainty
  • Data
  • Model
  • Parameters
  • Estimation
  • Physical Models
  • Overview
  • Differentiable Models
  • Ocean GCMs
  • Quasi-Geostrophic
  • Shallow Water
  • Examples
  • State Estimation
  • Parameter Estimation
  • Bi-Level Estimation
  • Gradient Learning
  • OceanBench
  • Overview
  • Data
  • SSH Interpolation
  • SSH Forecast
  • SSH Surrogate
  • Example - Lorenz-63
  • Missing Data
  • State Est. - Strong
  • State Est. - Weak
  • Resources
  • Code
  • Literature
  • Appendix
  • Definitions
  • Bayes For Inference/Learning
  • Problem Choices
Made with MyST