Space-Time Decomposition

CNRS
MEOM

PDE Formulation/Inspiration


Dynamical System


Spatial Operators

Local & Global, Gradient & Integral, Numerical & ML


Whirlwind Tour

Criteria

Uniform Grid. This determines if the grid structure is uniform or not.

Mesh Invariant. This determines if one can use arbitrary resolutions or not.

Fixed Parameters. The parameters of the transformation are fixed or not, e.g. convolutional kernel, kernel function hyper-parameters, neural network function parameters.

Local vs Global. This says if the transformation is a local transformation, e.g. gradient, or a global transformation, e.g. integral.

Fixed Structure Transformation. This is whether the transformation can be applied to any new arbitrary grid structure. This is especially useful for methods which

Table 1:Hybrid Spatiotemporal Operators

ClassNameUniform GridMesh InvariantFixed ParamsLocal / GlobalFixed
Coordinate-BasedKernels MethodsNoYesNoBoth*No
Coordinate-BasedNeural FieldsNoYesNoBoth*No
Numerical OperatorsFinite DifferenceNoNoNoLocalYes
Numerical OperatorsFinite VolumeNoNoNoLocalYes
Numerical OperatorsFinite ElementNoNoNoLocalYes
Numerical OperatorsSpectral MethodsNoNoNoGlobalYes
Neural OperatorsDeep ONets [Lu et al., 2021]NoYesNoGlobalYes
Neural OperatorsFNO [Kovachki et al., 2021]YesYesNoGlobalYes

Time Steppers

Integrals, Numerical & ML

Fundamental Theorem of Calculus

u(x,t)=u0+0tF(u,u0,τ,)dτ u(x, t) = u_0 + \int_0^t F(u, u_0, \tau,)d\tau

Auto-Regressive

u(x,Δt)=u0+0ΔtF(u,u0,Δt,)dτu(x, \Delta t) = u_0 + \int_0^{\Delta t} F(u, u_0, \Delta t,)d\tau

Criteria

  • Integral Approx - MC, IS, Quadrature, Taylor Expansion
  • Implicit vs Explicit
  • Fixed vs Variable Params
  • Local (AR) vs Global (FC)
  • Structured vs Unstructured - weird time steps

Hybrid

tu=αFdyn(u,t;θ)+(1α)Fparam(u,t;θ)\partial_t u = \alpha \boldsymbol{F}_\text{dyn}(u, t;\boldsymbol{\theta}) + (1 - \alpha) \boldsymbol{F}_\text{param}(u, t;\boldsymbol{\theta})

Dynamical Model - In this example, α=1\alpha=1 and we assume that the system dynamics are known we can write our problem as a PDE.

Surrogate Model - In this case, α=0\alpha=0 and we assume that the system dynamics are unknown and we cannot formulate our problem as a PDE.

Hybrid Model - In this case, 0<α<10 < \alpha < 1 ad we assume that the system dynamics are partially-known and we can formulate portions of our problem (spatially, temporally, or both) as a PDE and the other portion as a parameterized function.

Table 1:Hybrid Spatiotemporal Operators

NameSpatialTemporalExample
Numerical PDEFinite Derivatives (Diff,Vol,Elem)Time StepperQG + RK4 Scheme
Numerical PDESpectral DerivativesTime StepperQG + RK4 Scheme
SurrogateSpatial NN OperatorTemporal NN OperatorNeural Flows [Biloš et al., 2021], PDE-Refiner [Lippe et al., 2023], Message Passing PDE [Brandstetter et al., 2022]
SurrogateSpatiotemporal NN Operator" "NerFs, ConvLSTM [Shi et al., 2015], FNO [Kovachki et al., 2021], CORAL [Serrano et al., 2023]
HybridSpatial NN OperatorTimeStepperNeural ODE [Kidger, 2022]
HybridFinite DerivativesNeural NetworkPDE Solver [Brandstetter et al., 2022]
HybridFinite Der. + NNTimeStepperUniversal Differential Equations [Rackauckas et al., 2020]
HybridFinite Der. + NNTimeStepper + NNFouRKS [Chattopadhyay & Hassanzadeh, 2023]
References
  1. Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. (2021). Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3), 218–229. 10.1038/s42256-021-00302-5
  2. Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2021). Neural Operator: Learning Maps Between Function Spaces. arXiv. 10.48550/ARXIV.2108.08481
  3. Biloš, M., Sommer, J., Rangapuram, S. S., Januschowski, T., & Günnemann, S. (2021). Neural Flows: Efficient Alternative to Neural ODEs. arXiv. 10.48550/ARXIV.2110.13040
  4. Lippe, P., Veeling, B. S., Perdikaris, P., Turner, R. E., & Brandstetter, J. (2023). PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers. arXiv. 10.48550/ARXIV.2308.05732
  5. Brandstetter, J., Worrall, D., & Welling, M. (2022). Message Passing Neural PDE Solvers. arXiv. 10.48550/ARXIV.2202.03376