PDE Formulation/Inspiration
Dynamical System¶
Spatial Operators¶
Local & Global, Gradient & Integral, Numerical & ML
Whirlwind Tour¶
Criteria¶
Uniform Grid. This determines if the grid structure is uniform or not.
Mesh Invariant. This determines if one can use arbitrary resolutions or not.
Fixed Parameters. The parameters of the transformation are fixed or not, e.g. convolutional kernel, kernel function hyper-parameters, neural network function parameters.
Local vs Global. This says if the transformation is a local transformation, e.g. gradient, or a global transformation, e.g. integral.
Fixed Structure Transformation. This is whether the transformation can be applied to any new arbitrary grid structure. This is especially useful for methods which
Table 1:Hybrid Spatiotemporal Operators
Class | Name | Uniform Grid | Mesh Invariant | Fixed Params | Local / Global | Fixed |
---|---|---|---|---|---|---|
Coordinate-Based | Kernels Methods | No | Yes | No | Both* | No |
Coordinate-Based | Neural Fields | No | Yes | No | Both* | No |
Numerical Operators | Finite Difference | No | No | No | Local | Yes |
Numerical Operators | Finite Volume | No | No | No | Local | Yes |
Numerical Operators | Finite Element | No | No | No | Local | Yes |
Numerical Operators | Spectral Methods | No | No | No | Global | Yes |
Neural Operators | Deep ONets [Lu et al., 2021] | No | Yes | No | Global | Yes |
Neural Operators | FNO [Kovachki et al., 2021] | Yes | Yes | No | Global | Yes |
Time Steppers¶
Integrals, Numerical & ML
Fundamental Theorem of Calculus
Auto-Regressive
Criteria
- Integral Approx - MC, IS, Quadrature, Taylor Expansion
- Implicit vs Explicit
- Fixed vs Variable Params
- Local (AR) vs Global (FC)
- Structured vs Unstructured - weird time steps
Hybrid¶
Dynamical Model - In this example, and we assume that the system dynamics are known we can write our problem as a PDE.
Surrogate Model - In this case, and we assume that the system dynamics are unknown and we cannot formulate our problem as a PDE.
Hybrid Model - In this case, ad we assume that the system dynamics are partially-known and we can formulate portions of our problem (spatially, temporally, or both) as a PDE and the other portion as a parameterized function.
Table 1:Hybrid Spatiotemporal Operators
Name | Spatial | Temporal | Example |
---|---|---|---|
Numerical PDE | Finite Derivatives (Diff,Vol,Elem) | Time Stepper | QG + RK4 Scheme |
Numerical PDE | Spectral Derivatives | Time Stepper | QG + RK4 Scheme |
Surrogate | Spatial NN Operator | Temporal NN Operator | Neural Flows [Biloš et al., 2021], PDE-Refiner [Lippe et al., 2023], Message Passing PDE [Brandstetter et al., 2022] |
Surrogate | Spatiotemporal NN Operator | " " | NerFs, ConvLSTM [Shi et al., 2015], FNO [Kovachki et al., 2021], CORAL [Serrano et al., 2023] |
Hybrid | Spatial NN Operator | TimeStepper | Neural ODE [Kidger, 2022] |
Hybrid | Finite Derivatives | Neural Network | PDE Solver [Brandstetter et al., 2022] |
Hybrid | Finite Der. + NN | TimeStepper | Universal Differential Equations [Rackauckas et al., 2020] |
Hybrid | Finite Der. + NN | TimeStepper + NN | FouRKS [Chattopadhyay & Hassanzadeh, 2023] |
- Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. (2021). Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3), 218–229. 10.1038/s42256-021-00302-5
- Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2021). Neural Operator: Learning Maps Between Function Spaces. arXiv. 10.48550/ARXIV.2108.08481
- Biloš, M., Sommer, J., Rangapuram, S. S., Januschowski, T., & Günnemann, S. (2021). Neural Flows: Efficient Alternative to Neural ODEs. arXiv. 10.48550/ARXIV.2110.13040
- Lippe, P., Veeling, B. S., Perdikaris, P., Turner, R. E., & Brandstetter, J. (2023). PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers. arXiv. 10.48550/ARXIV.2308.05732
- Brandstetter, J., Worrall, D., & Welling, M. (2022). Message Passing Neural PDE Solvers. arXiv. 10.48550/ARXIV.2202.03376