Map#
import sys, os
# spyder up to find the root
oceanbench_root = "/gpfswork/rech/cli/uvo53rl/projects/oceanbench"
# append to path
sys.path.append(str(oceanbench_root))
import autoroot
import typing as tp
import jax
import jax.numpy as jnp
import jax.scipy as jsp
import jax.random as jrandom
import numpy as np
import numba as nb
import pandas as pd
import equinox as eqx
import kernex as kex
import diffrax as dfx
import xarray as xr
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm.notebook import tqdm, trange
from jaxtyping import Float, Array, PyTree, ArrayLike
import wandb
from omegaconf import OmegaConf
import hydra
import metpy
from sklearn.pipeline import Pipeline
from jejeqx._src.transforms.dataframe.spatial import Spherical2Cartesian
from jejeqx._src.transforms.dataframe.temporal import TimeDelta
from jejeqx._src.transforms.dataframe.scaling import MinMaxDF
sns.reset_defaults()
sns.set_context(context="poster", font_scale=0.7)
jax.config.update("jax_enable_x64", False)
%matplotlib inline
%load_ext autoreload
%autoreload 2
Processing Chain#
Part I:
Open Dataset
Validate Coordinates + Variables
Decode Time
Select Region
Sortby Time
Part II: Regrid
Part III:
Interpolate Nans
Add Units
Spatial Rescale
Time Rescale
Part IV: Metrics
Data#
# !wget wget -nc https://s3.us-east-1.wasabisys.com/melody/osse_data/ref/NATL60-CJM165_GULFSTREAM_ssh_y2013.1y.nc
!ls /gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/staging/results/DUACS
# !cat configs/postprocess.yaml
# # load config
# config_dm = OmegaConf.load('./configs/postprocess.yaml')
# # instantiate
# ds = hydra.utils.instantiate(config_dm.NATL60_GF_1Y1D)
# ds
Reference Dataset#
For the reference dataset, we will look at the NEMO simulation of the Gulfstream.
%%time
# load config
config_dm = OmegaConf.load("./configs/postprocess.yaml")
# instantiate
ds_natl60 = hydra.utils.instantiate(config_dm.NATL60_GF_FULL).compute()
ds_natl60
CPU times: user 12.9 s, sys: 2.96 s, total: 15.9 s
Wall time: 45.1 s
<xarray.Dataset> Dimensions: (time: 42, lat: 600, lon: 600) Coordinates: * lon (lon) float64 -64.98 -64.97 -64.95 -64.93 ... -55.03 -55.02 -55.0 * lat (lat) float64 33.02 33.03 33.05 33.07 ... 42.95 42.97 42.98 43.0 * time (time) datetime64[ns] 2012-10-22 2012-10-23 ... 2012-12-02 Data variables: ssh (time, lat, lon) float32 0.6549 0.6571 0.6593 ... -0.2152 -0.2174 Attributes: Info: Horizontal grid read in regulargrid_NATL60.nc / Source field re... About: Created by SOSIE interpolation environement => https://github.c...
nadir4_config = OmegaConf.load(f"./configs/natl60_obs.yaml")
ds_nadir4 = hydra.utils.instantiate(nadir4_config.ALONGTRACK_NADIR4.data).compute()
ds_swot1nadir5 = hydra.utils.instantiate(
nadir4_config.ALONGTRACK_SWOT1NADIR5.data
).compute()
ds_swot1nadir5
<xarray.Dataset> Dimensions: (time: 1003548) Coordinates: lon (time) float64 -55.03 -55.06 -55.1 -55.13 ... -59.01 -59.03 -59.05 lat (time) float64 39.58 39.53 39.47 39.42 ... 42.81 42.87 42.93 42.98 * time (time) datetime64[ns] 2012-10-22T11:16:43.687588 ... 2012-12-02T... Data variables: ssh (time) float64 0.9958 1.014 1.027 1.032 ... -0.112 -0.1122 -0.1118 Attributes: (12/26) description: SWOT fixed grid corresponding_grid: title: Altimeter like data simulated by SWOT simulator keywords: check keywords Conventions: CF-1.6 summary: SWOT grid data produced ... ... geospatial_lon_units: degrees_east project: SWOT date_created: 2018-10-12T12:39:50Z date_modified: 2018-10-12T12:39:50Z keywords_vocabulary: NASA references: Gaultier, L., C. Ubelmann, and L.-L. Fu, 2016:...
Regrdding: AlongTrack -> Uniform Grid#
from oceanbench._src.geoprocessing.gridding import (
grid_to_regular_grid,
coord_based_to_grid,
)
%%time
ds_nadir4 = coord_based_to_grid(
coord_based_ds=ds_nadir4,
target_grid_ds=ds_natl60.pint.dequantify(),
)
ds_swot1nadir5 = coord_based_to_grid(
coord_based_ds=ds_swot1nadir5,
target_grid_ds=ds_natl60.pint.dequantify(),
)
CPU times: user 3.6 s, sys: 211 ms, total: 3.81 s
Wall time: 3.82 s
AlongTrack -> Uniform Grid#
# load config
psd_config = OmegaConf.load("./configs/metrics.yaml")
ds_natl60 = hydra.utils.instantiate(psd_config.fill_nans)(ds_natl60.pint.dequantify())
def correct_labels(ds):
ds["lon"].attrs["units"] = "degrees"
ds["lat"].attrs["units"] = "degrees"
ds["ssh"].attrs["units"] = "m"
ds["ssh"].attrs["standard_name"] = "sea_surface_height"
ds["ssh"].attrs["long_name"] = "Sea Surface Height"
ds["lon"].attrs["standard_name"] = "longitude"
ds["lat"].attrs["standard_name"] = "latitude"
ds["lat"].attrs["long_name"] = "Latitude"
ds["lon"].attrs["long_name"] = "Longitude"
return ds
def plot_obs(ds, variable: str = "ssh", **kwargs):
fig, ax = plt.subplots(figsize=(7, 5.5))
X, Y = np.meshgrid(ds[variable].lon, ds[variable].lat, indexing="ij")
xlabel = f"{ds.lon.attrs['long_name']} [{ds.lon.attrs['units']}]"
ylabel = f"{ds.lat.attrs['long_name']} [{ds.lat.attrs['units']}]"
pts = ax.scatter(
X,
Y,
c=np.ma.masked_invalid(ds[variable]).T,
marker="s",
s=0.25,
vmin=kwargs.pop("vmin", None),
vmax=kwargs.pop("vmax", None),
)
ax.set(
xlim=kwargs.pop("xlim", None),
ylim=kwargs.pop("ylim", None),
xlabel=xlabel,
ylabel=ylabel,
)
name = ds[variable].attrs["long_name"]
unit = ds[variable].attrs["units"]
label = f"{name} [{unit}]"
plt.colorbar(pts, cmap=kwargs.pop("cmap", "viridis"), label=label)
ax.set_title(pd.to_datetime(ds.time.values).strftime("%Y-%m-%d"))
fig.tight_layout()
return fig, ax
vmin, vmax = (
correct_labels(ds_natl60).ssh.min().pint.dequantify(),
correct_labels(ds_natl60).ssh.max().pint.dequantify(),
)
xlim = [ds_natl60.lon.min().values, ds_natl60.lon.max().values]
ylim = [ds_natl60.lat.min().values, ds_natl60.lat.max().values]
itime = "2012-10-27"
variable = "ssh"
# SWOT1NADIR5
fig, ax = plot_obs(
correct_labels(ds_swot1nadir5).sel(time=itime).pint.dequantify(),
variable,
vmin=vmin,
vmax=vmax,
xlim=xlim,
ylim=ylim,
cmap="viridis",
)
fig.savefig(f"./figures/dc20a/maps/dc20a_ssh_swot1nadir5_{itime}.png")
plt.close()
# NADIR4
fig, ax = plot_obs(
correct_labels(ds_nadir4).sel(time=itime).pint.dequantify(),
variable,
vmin=vmin,
vmax=vmax,
xlim=xlim,
ylim=ylim,
cmap="viridis",
)
fig.savefig(f"./figures/dc20a/maps/dc20a_ssh_nadir4_{itime}.png")
plt.close()
Coarsend Versions#
ds_natl60 = ds_natl60.coarsen({"lon": 3, "lat": 3}).mean()
ds_natl60
<xarray.Dataset> Dimensions: (time: 42, lat: 200, lon: 200) Coordinates: * lon (lon) float64 -64.97 -64.92 -64.87 -64.82 ... -55.12 -55.07 -55.02 * lat (lat) float64 33.03 33.08 33.13 33.18 ... 42.83 42.88 42.93 42.98 * time (time) datetime64[ns] 2012-10-22 2012-10-23 ... 2012-12-02 Data variables: ssh (time, lat, lon) float32 0.652 0.6585 0.6642 ... -0.2079 -0.2149 Attributes: Info: Horizontal grid read in regulargrid_NATL60.nc / Source field re... About: Created by SOSIE interpolation environement => https://github.c...
Prediction Datasets#
%%time
# load config
experiment = "swot" # "nadir" #
if experiment == "nadir":
# load config
results_config = OmegaConf.load(f"./configs/results_dc20a_nadir.yaml")
# instantiate
ds_duacs = hydra.utils.instantiate(results_config.DUACS_NADIR.data).compute()
ds_miost = hydra.utils.instantiate(results_config.MIOST_NADIR.data).compute()
ds_nerf_siren = hydra.utils.instantiate(
results_config.NERF_SIREN_NADIR.data
).compute()
ds_nerf_ffn = hydra.utils.instantiate(results_config.NERF_FFN_NADIR.data).compute()
ds_nerf_mlp = hydra.utils.instantiate(results_config.NERF_MLP_NADIR.data).compute()
elif experiment == "swot":
# load config
results_config = OmegaConf.load(f"./configs/results_dc20a_swot.yaml")
# instantiate
ds_duacs = hydra.utils.instantiate(results_config.DUACS_SWOT.data).compute()
ds_miost = hydra.utils.instantiate(results_config.MIOST_SWOT.data).compute()
ds_nerf_siren = hydra.utils.instantiate(
results_config.NERF_SIREN_SWOT.data
).compute()
ds_nerf_ffn = hydra.utils.instantiate(results_config.NERF_FFN_SWOT.data).compute()
ds_nerf_mlp = hydra.utils.instantiate(results_config.NERF_MLP_SWOT.data).compute()
CPU times: user 188 ms, sys: 52.7 ms, total: 241 ms
Wall time: 568 ms
!ls /gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/staging/ml_ready/
nadir1.nc nadir4.nc nadir5.nc swot1nadir5.nc swot1.nc swot.nc
Regrdding#
Uniform Grid –> Uniform Grid#
%%time
ds_duacs = grid_to_regular_grid(
src_grid_ds=ds_duacs.pint.dequantify(),
tgt_grid_ds=ds_natl60.pint.dequantify(),
keep_attrs=False,
)
ds_miost = grid_to_regular_grid(
src_grid_ds=ds_miost.pint.dequantify(),
tgt_grid_ds=ds_natl60.pint.dequantify(),
keep_attrs=False,
)
ds_nerf_siren = grid_to_regular_grid(
src_grid_ds=ds_nerf_siren.pint.dequantify(),
tgt_grid_ds=ds_natl60.pint.dequantify(),
keep_attrs=False,
)
ds_nerf_ffn = grid_to_regular_grid(
src_grid_ds=ds_nerf_ffn.pint.dequantify(),
tgt_grid_ds=ds_natl60.pint.dequantify(),
keep_attrs=False,
)
ds_nerf_mlp = grid_to_regular_grid(
src_grid_ds=ds_nerf_mlp.pint.dequantify(),
tgt_grid_ds=ds_natl60.pint.dequantify(),
keep_attrs=False,
)
CPU times: user 12 s, sys: 161 ms, total: 12.2 s
Wall time: 12.2 s
Preprocess Chain#
%%time
# load config
psd_config = OmegaConf.load("./configs/metrics.yaml")
ds_duacs = hydra.utils.instantiate(psd_config.fill_nans)(ds_duacs.pint.dequantify())
ds_miost = hydra.utils.instantiate(psd_config.fill_nans)(ds_miost.pint.dequantify())
ds_nerf_siren = hydra.utils.instantiate(psd_config.fill_nans)(
ds_nerf_siren.pint.dequantify()
)
ds_nerf_ffn = hydra.utils.instantiate(psd_config.fill_nans)(
ds_nerf_ffn.pint.dequantify()
)
ds_nerf_mlp = hydra.utils.instantiate(psd_config.fill_nans)(
ds_nerf_mlp.pint.dequantify()
)
CPU times: user 971 ms, sys: 0 ns, total: 971 ms
Wall time: 974 ms
Physical Variables#
from oceanbench._src.geoprocessing import geostrophic as geocalc
from metpy.units import units
def calculate_anomaly(ds, variable="ssh", dim=["lat", "lon"]):
ds[f"{variable}_anomaly"] = ds[variable] - ds[variable].mean(dim=dim)
return ds
def calculate_physical_quantities(da):
# da = da.pint.quantify(
# {
# "ssh": "meter",
# "lon": "degrees_east",
# "lat": "degrees_north",
# "time": "seconds",
# }
# )
da["ssh"] *= units.meters
da["lon"] = da.lon * units.degrees
da["lat"] = da.lat * units.degrees
da = calculate_anomaly(da, variable="ssh", dim=["lat", "lon"])
da = geocalc.streamfunction(da, "ssh")
da = geocalc.geostrophic_velocities(da, variable="psi")
da = geocalc.kinetic_energy(da, variables=["u", "v"])
da = geocalc.divergence(da, variables=["u", "v"])
da = geocalc.coriolis_normalized(da, "div")
da = geocalc.relative_vorticity(da, variables=["u", "v"])
da = geocalc.coriolis_normalized(da, "vort_r")
da = geocalc.strain_magnitude(da, variables=["u", "v"])
da = geocalc.coriolis_normalized(da, variable="strain")
return da
ds_natl60 = calculate_physical_quantities(ds_natl60.pint.dequantify())
ds_natl60
<xarray.Dataset> Dimensions: (time: 42, lat: 200, lon: 200) Coordinates: * lon (lon) float64 -64.97 -64.92 -64.87 ... -55.12 -55.07 -55.02 * lat (lat) float64 33.03 33.08 33.13 33.18 ... 42.88 42.93 42.98 * time (time) datetime64[ns] 2012-10-22 2012-10-23 ... 2012-12-02 Data variables: ssh (time, lat, lon) float32 [m] 0.6520022 ... -0.21487716 ssh_anomaly (time, lat, lon) float32 [m] 0.21967244 0.22621 ... -0.62783194 psi (time, lat, lon) float64 [m²/s] 7.129e+04 ... -2.349e+04 u (time, lat, lon) float64 [m/s] 0.3173 0.2937 ... 0.03065 0.034 v (time, lat, lon) float64 [m/s] 0.1632 0.1429 ... -0.1873 ke (time, lat, lon) float64 [m²/s²] 0.06364 0.05333 ... 0.01813 div (time, lat, lon) float64 [] 0.00134 0.001017 ... -0.002834 vort_r (time, lat, lon) float64 [] -4.076 -6.084 -7.36 ... 2.045 6.967 strain (time, lat, lon) float64 [] 5.962 6.215 6.596 ... 5.562 4.481 Attributes: Info: Horizontal grid read in regulargrid_NATL60.nc / Source field re... About: Created by SOSIE interpolation environement => https://github.c...
%%time
ds_natl60 = calculate_physical_quantities(ds_natl60.pint.dequantify())
ds_duacs = calculate_physical_quantities(ds_duacs.pint.dequantify())
ds_miost = calculate_physical_quantities(ds_miost.pint.dequantify())
ds_nerf_siren = calculate_physical_quantities(ds_nerf_siren.pint.dequantify())
ds_nerf_ffn = calculate_physical_quantities(ds_nerf_ffn.pint.dequantify())
ds_nerf_mlp = calculate_physical_quantities(ds_nerf_mlp.pint.dequantify())
CPU times: user 3.47 s, sys: 218 ms, total: 3.69 s
Wall time: 3.7 s
Sea Surface Height#
def plot_map(ds, variable: str="ssh", **kwargs):
fig, ax = plt.subplots(figsize=(7,5.5))
vmin=kwargs.pop("vmin", None)
vmax=kwargs.pop("vmax", None)
cmap=kwargs.pop("cmap", "viridis")
loc = ticker.MaxNLocator(kwargs.pop("levels", 5))
ds[variable].plot.pcolormesh(
ax=ax, vmin=vmin, vmax=vmax, cmap=cmap,
cbar_kwargs=kwargs.pop("cbar_kwargs", None),
**kwargs,
)
levels = loc.tick_values(ds[variable].min().values, ds[variable].max().values)
ds[variable].plot.contour(
ax=ax,
levels=levels,
alpha=0.5, linewidths=1, cmap="black",
# vmin=vmin, vmax=vmax,
# **kwargs
)
ax.set_title(pd.to_datetime(ds.time.values).strftime('%Y-%m-%d'))
fig.tight_layout()
return fig, ax
from matplotlib import ticker
def plot_ssh_map(ds, variable: str="ssh", **kwargs):
fig, ax = plt.subplots(figsize=(7,5.5))
vmin=kwargs.pop("vmin", ds[variable].min().values)
vmax=kwargs.pop("vmax", ds[variable].max().values)
cmap=kwargs.pop("cmap", "viridis")
levels = kwargs.pop("levels", 5)
ds[variable].plot.pcolormesh(
ax=ax, vmin=vmin, vmax=vmax, cmap=cmap,
cbar_kwargs=kwargs.pop("cbar_kwargs", None),
**kwargs,
)
loc = ticker.MaxNLocator(levels)
levels = loc.tick_values(ds[variable].min().values, ds[variable].max().values)
ds[variable].plot.contour(
ax=ax,
alpha=0.5, linewidths=1, cmap="black",
levels=levels,
linestyles=np.where(levels >= 0, "-", "--")
# vmin=vmin, vmax=vmax,
# **kwargs
)
ax.set_title(pd.to_datetime(ds.time.values).strftime('%Y-%m-%d'))
fig.tight_layout()
return fig, ax
ds_natl60_mean = ds_natl60.mean(dim=["lat", "lon"])
ds_duacs_mean = ds_duacs.mean(dim=["lat", "lon"])
ds_miost_mean = ds_miost.mean(dim=["lat", "lon"])
ds_nerf_mlp_mean = ds_nerf_mlp.mean(dim=["lat", "lon"])
ds_nerf_ffn_mean = ds_nerf_ffn.mean(dim=["lat", "lon"])
ds_nerf_siren_mean = ds_nerf_siren.mean(dim=["lat", "lon"])
ds_natl60_var = ds_natl60.var(dim=["lat", "lon"])
ds_duacs_var = ds_duacs.var(dim=["lat", "lon"])
ds_miost_var = ds_miost.var(dim=["lat", "lon"])
ds_nerf_mlp_var = ds_nerf_mlp.var(dim=["lat", "lon"])
ds_nerf_ffn_var = ds_nerf_ffn.var(dim=["lat", "lon"])
ds_nerf_siren_var = ds_nerf_siren.var(dim=["lat", "lon"])
fig, ax = plt.subplots(figsize=(10,5))
ds_natl60_mean.ssh.plot(ax=ax, label="NATL60", color="black", linewidth=5)
ds_duacs_mean.ssh.plot(ax=ax, label="DUACS", color="tab:green")
ds_miost_mean.ssh.plot(ax=ax, label="MIOST", color="tab:red")
ds_nerf_mlp_mean.ssh.plot(ax=ax, label="NerF (MLP)", color="tab:olive")
ds_nerf_ffn_mean.ssh.plot(ax=ax, label="NerF (FFN)", color="tab:blue")
ds_nerf_siren_mean.ssh.plot(ax=ax, label="NerF (SIREN)", color="tab:cyan")
ax.set(
xlabel="Date",
ylabel="Mean SSH [m]"
)
plt.legend()
plt.tight_layout()
plt.show()
fig, ax = plt.subplots(figsize=(10,5))
ds_natl60_var.ssh.plot(ax=ax, label="NATL60", color="black", linewidth=5)
ds_duacs_var.ssh.plot(ax=ax, label="DUACS", color="tab:green")
ds_miost_var.ssh.plot(ax=ax, label="MIOST", color="tab:red")
ds_nerf_mlp_var.ssh.plot(ax=ax, label="NerF (MLP)", color="tab:olive")
ds_nerf_ffn_var.ssh.plot(ax=ax, label="NerF (FFN)", color="tab:blue")
ds_nerf_siren_var.ssh.plot(ax=ax, label="NerF (SIREN)", color="tab:cyan")
ax.set(
xlabel="Date",
ylabel="Variance SSH [m]"
)
plt.legend()
plt.tight_layout()
plt.show()
variable = "ssh_anomaly"
vmin = correct_labels(ds_natl60)[variable].min().pint.dequantify()
vmax = correct_labels(ds_natl60)[variable].max().pint.dequantify()
xlim = [ds_natl60.lon.min().values, ds_natl60.lon.max().values]
ylim = [ds_natl60.lat.min().values, ds_natl60.lat.max().values]
itime = "2012-10-27"
cmap = "viridis"
#NATL60
fig, ax = plot_ssh_map(
correct_labels(ds_natl60).sel(time=itime),
variable, vmin=vmin, vmax=vmax, xlim=xlim,
ylim=ylim, cmap=cmap,
robust=False,
cbar_kwargs={"label": "SSH Anomaly [m]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_natl60_{experiment}_{itime}.png")
plt.show()
# DUACS
fig, ax = plot_ssh_map(
correct_labels(ds_duacs).sel(time=itime),
variable, vmin=vmin, vmax=vmax, xlim=xlim,
ylim=ylim, cmap=cmap,
robust=False,
cbar_kwargs={"label": "SSH Anomaly [m]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_duacs_{experiment}_{itime}.png")
plt.show()
# MIOST
fig, ax = plot_ssh_map(
correct_labels(ds_miost).sel(time=itime),
variable, vmin=vmin, vmax=vmax, xlim=xlim,
ylim=ylim, cmap=cmap,
robust=False,
cbar_kwargs={"label": "SSH Anomaly [m]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_miost_{experiment}_{itime}.png")
plt.show()
# NERF - MLP
fig, ax = plot_ssh_map(
correct_labels(ds_nerf_mlp).sel(time=itime),
variable, vmin=vmin, vmax=vmax, xlim=xlim,
ylim=ylim, cmap=cmap,
robust=False,
cbar_kwargs={"label": "SSH Anomaly [m]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_mlp_{experiment}_{itime}.png")
plt.close()
# NERF - FFN
fig, ax = plot_ssh_map(
correct_labels(ds_nerf_ffn).sel(time=itime),
variable, vmin=vmin, vmax=vmax, xlim=xlim,
ylim=ylim, cmap=cmap,
robust=False,
cbar_kwargs={"label": "SSH Anomaly [m]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_ffn_{experiment}_{itime}.png")
plt.close()
# NERF - SIREN
fig, ax = plot_ssh_map(
correct_labels(ds_nerf_siren).sel(time=itime),
variable, vmin=vmin, vmax=vmax, xlim=xlim,
ylim=ylim, cmap=cmap,
robust=False,
levels=5,
cbar_kwargs={"label": "SSH Anomaly [m]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_siren_{experiment}_{itime}.png")
plt.close()
Kinetic Energy#
def plot_ke_map(ds, variable: str="ssh", **kwargs):
fig, ax = plt.subplots(figsize=(7,5.5))
vmin=kwargs.pop("vmin", None)
vmax=kwargs.pop("vmax", None)
cmap=kwargs.pop("cmap", "viridis")
# loc = ticker.MaxNLocator()
loc = ticker.LogLocator(numticks=kwargs.pop("levels", 10))
ds[variable].plot.pcolormesh(
ax=ax, vmin=vmin, vmax=vmax, cmap=cmap,
cbar_kwargs=kwargs.pop("cbar_kwargs", None),
**kwargs,
)
levels = loc.tick_values(ds[variable].min().values, ds[variable].max().values)
ds[variable].plot.contour(
ax=ax,
levels=levels,
alpha=0.5, linewidths=1, cmap="black",
# vmin=vmin, vmax=vmax,
# **kwargs
)
ax.set_title(pd.to_datetime(ds.time.values).strftime('%Y-%m-%d'))
fig.tight_layout()
return fig, ax
variable = "ke"
itime = "2012-10-27"
cmap = "YlGnBu_r"
robust = True
vmin = 0 #0.95 * ds_natl60[variable].sel(time=itime).min().pint.dequantify()#.quantile(0.05)
vmax = 1.05 * ds_natl60[variable].sel(time=itime).max().pint.dequantify()#.quantile(0.95)
xlim = [ds_natl60.lon.min().values, ds_natl60.lon.max().values]
ylim = [ds_natl60.lat.min().values, ds_natl60.lat.max().values]
#NATL60
fig, ax = plot_ke_map(
ds_natl60.sel(time=itime).pint.dequantify(),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
cbar_kwargs={"label": "Kinetic Energy [m$^{2}$s$^{-2}$]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_natl60_{experiment}_{itime}.png")
plt.show()
# DUACS
fig, ax = plot_ke_map(
correct_labels(ds_duacs).sel(time=itime),
variable, vmin=vmin, vmax=vmax, xlim=xlim,
ylim=ylim, cmap=cmap,
robust=False,
cbar_kwargs={"label": "Kinetic Energy [m$^{2}$s$^{-2}$]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_duacs_{experiment}_{itime}.png")
plt.show()
# MIOST
fig, ax = plot_ke_map(
ds_miost.sel(time=itime),
variable, vmin=vmin, vmax=vmax, xlim=xlim,
ylim=ylim, cmap=cmap,
robust=False,
cbar_kwargs={"label": "Kinetic Energy [m$^{2}$s$^{-2}$]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_miost_{experiment}_{itime}.png")
plt.show()
# NERF - MLP
fig, ax = plot_ke_map(
correct_labels(ds_nerf_mlp).sel(time=itime),
variable, vmin=vmin, vmax=vmax, xlim=xlim,
ylim=ylim, cmap=cmap,
robust=False,
cbar_kwargs={"label": "Kinetic Energy [m$^{2}$s$^{-2}$]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_mlp_{experiment}_{itime}.png")
plt.show()
# NERF - FFN
fig, ax = plot_ke_map(
correct_labels(ds_nerf_ffn).sel(time=itime),
variable, vmin=vmin, vmax=vmax, xlim=xlim,
ylim=ylim, cmap=cmap,
robust=False,
cbar_kwargs={"label": "Kinetic Energy [m$^{2}$s$^{-2}$]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_ffn_{experiment}_{itime}.png")
plt.show()
# NERF - SIREN
fig, ax = plot_ke_map(
correct_labels(ds_nerf_siren).sel(time=itime),
variable, vmin=vmin, vmax=vmax, xlim=xlim,
ylim=ylim, cmap=cmap,
robust=False,
cbar_kwargs={"label": "Kinetic Energy [m$^{2}$s$^{-2}$]"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_siren_{experiment}_{itime}.png")
plt.show()
Relative Vorticity#
variable = "vort_r"
itime = "2012-10-27"
cmap = "RdBu_r"
robust = True
vmin = -30 #ds_natl60[variable].sel(time=itime).min().pint.dequantify().quantile(0.10)
vmax = 30 # ds_natl60[variable].sel(time=itime).max().pint.dequantify().quantile(0.90)
xlim = [ds_natl60.lon.min().values, ds_natl60.lon.max().values]
ylim = [ds_natl60.lat.min().values, ds_natl60.lat.max().values]
#NATL60
fig, ax = plot_map(
ds_natl60.sel(time=itime).pint.dequantify(),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=10,
cbar_kwargs={"label": "Normalized Relative Vorticity"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_natl60_{experiment}_{itime}.png")
plt.show()
# DUACS
fig, ax = plot_map(
correct_labels(ds_duacs).sel(time=itime),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=10,
cbar_kwargs={"label": "Normalized Relative Vorticity"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_duacs_{experiment}_{itime}.png")
plt.close()
# MIOST
fig, ax = plot_map(
correct_labels(ds_miost).sel(time=itime),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=10,
cbar_kwargs={"label": "Normalized Relative Vorticity"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_miost_{experiment}_{itime}.png")
plt.close()
# NERF - MLP
fig, ax = plot_map(
correct_labels(ds_nerf_mlp).sel(time=itime),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=10,
cbar_kwargs={"label": "Normalized Relative Vorticity"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_mlp_{experiment}_{itime}.png")
plt.close()
# NERF - FFN
fig, ax = plot_map(
correct_labels(ds_nerf_ffn).sel(time=itime),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=10,
cbar_kwargs={"label": "Normalized Relative Vorticity"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_ffn_{experiment}_{itime}.png")
plt.close()
# NERF - SIREN
fig, ax = plot_map(
correct_labels(ds_nerf_siren).sel(time=itime),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=10,
cbar_kwargs={"label": "Normalized Relative Vorticity"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_siren_{experiment}_{itime}.png")
plt.close()
Strain#
import cmocean as cmo
variable = "strain"
itime = "2012-10-27"
cmap = cmo.cm.speed
robust = True
vmin = 0#ds_natl60[variable].sel(time=itime).min().pint.dequantify().quantile(0.10)
vmax = 30 #ds_natl60[variable].sel(time=itime).max().pint.dequantify().quantile(0.90)
xlim = [ds_natl60.lon.min().values, ds_natl60.lon.max().values]
ylim = [ds_natl60.lat.min().values, ds_natl60.lat.max().values]
#NATL60
fig, ax = plot_ke_map(
ds_natl60.sel(time=itime).pint.dequantify(),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=5,
cbar_kwargs={"label": "Normalized Strain"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_natl60_{experiment}_{itime}.png")
plt.show()
# DUACS
fig, ax = plot_ke_map(
correct_labels(ds_duacs).sel(time=itime),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=5,
cbar_kwargs={"label": "Normalized Strain"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_duacs_{experiment}_{itime}.png")
plt.close()
# MIOST
fig, ax = plot_ke_map(
correct_labels(ds_miost).sel(time=itime),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=5,
cbar_kwargs={"label": "Normalized Strain"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_miost_{experiment}_{itime}.png")
plt.close()
# NERF - MLP
fig, ax = plot_ke_map(
correct_labels(ds_nerf_mlp).sel(time=itime),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=5,
cbar_kwargs={"label": "Normalized Strain"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_mlp_{experiment}_{itime}.png")
plt.close()
# NERF - FFN
fig, ax = plot_map(
correct_labels(ds_nerf_ffn).sel(time=itime),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=5,
cbar_kwargs={"label": "Normalized Strain"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_ffn_{experiment}_{itime}.png")
plt.close()
# NERF - SIREN
fig, ax = plot_map(
correct_labels(ds_nerf_siren).sel(time=itime),
variable,
vmin=vmin, vmax=vmax,
xlim=xlim, ylim=ylim, cmap=cmap,
robust=False,
levels=5,
cbar_kwargs={"label": "Normalized Strain"}
)
ax.set(xlabel="Longitude [degrees]", ylabel="Latitude [degrees]")
fig.savefig(f"./figures/dc20a/maps/dc20a_{variable}_nerf_siren_{experiment}_{itime}.png")
plt.close()