SpaceTime PSD#
import sys, os
# spyder up to find the root
oceanbench_root = "/gpfswork/rech/cli/uvo53rl/projects/oceanbench"
# append to path
sys.path.append(str(oceanbench_root))
import autoroot
import typing as tp
import jax
import jax.numpy as jnp
import jax.scipy as jsp
import jax.random as jrandom
import numpy as np
import numba as nb
import pandas as pd
import equinox as eqx
import kernex as kex
import finitediffx as fdx
import diffrax as dfx
import xarray as xr
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm.notebook import tqdm, trange
from jaxtyping import Float, Array, PyTree, ArrayLike
import wandb
from omegaconf import OmegaConf
import hydra
import metpy
from sklearn.pipeline import Pipeline
from jejeqx._src.transforms.dataframe.spatial import Spherical2Cartesian
from jejeqx._src.transforms.dataframe.temporal import TimeDelta
from jejeqx._src.transforms.dataframe.scaling import MinMaxDF
sns.reset_defaults()
sns.set_context(context="poster", font_scale=0.7)
jax.config.update("jax_enable_x64", False)
%matplotlib inline
%load_ext autoreload
%autoreload 2
Processing Chain#
Part I:
Open Dataset
Validate Coordinates + Variables
Decode Time
Select Region
Sortby Time
Part II: Regrid
Part III:
Interpolate Nans
Add Units
Spatial Rescale
Time Rescale
Part IV: Metrics
Data#
# !wget wget -nc https://s3.us-east-1.wasabisys.com/melody/osse_data/ref/NATL60-CJM165_GULFSTREAM_ssh_y2013.1y.nc
# !cat configs/postprocess.yaml
# # load config
# config_dm = OmegaConf.load('./configs/postprocess.yaml')
# # instantiate
# ds = hydra.utils.instantiate(config_dm.NATL60_GF_1Y1D)
# ds
Reference Dataset#
For the reference dataset, we will look at the NEMO simulation of the Gulfstream.
%%time
# load config
config_dm = OmegaConf.load("./configs/postprocess.yaml")
# instantiate
ds_natl60 = hydra.utils.instantiate(config_dm.NATL60_GF_FULL).compute()
ds_natl60
Prediction Datasets - NADIR#
%%time
experiment = "swot" # "nadir" #
if experiment == "nadir":
# load config
results_config = OmegaConf.load(f"./configs/results_dc20a_nadir.yaml")
# instantiate
ds_duacs = hydra.utils.instantiate(results_config.DUACS_NADIR.data).compute()
ds_miost = hydra.utils.instantiate(results_config.MIOST_NADIR.data).compute()
ds_nerf_siren = hydra.utils.instantiate(
results_config.NERF_SIREN_NADIR.data
).compute()
ds_nerf_ffn = hydra.utils.instantiate(results_config.NERF_FFN_NADIR.data).compute()
ds_nerf_mlp = hydra.utils.instantiate(results_config.NERF_MLP_NADIR.data).compute()
elif experiment == "swot":
# load config
results_config = OmegaConf.load(f"./configs/results_dc20a_swot.yaml")
# instantiate
ds_duacs = hydra.utils.instantiate(results_config.DUACS_SWOT.data).compute()
ds_miost = hydra.utils.instantiate(results_config.MIOST_SWOT.data).compute()
ds_nerf_siren = hydra.utils.instantiate(
results_config.NERF_SIREN_SWOT.data
).compute()
ds_nerf_ffn = hydra.utils.instantiate(results_config.NERF_FFN_SWOT.data).compute()
ds_nerf_mlp = hydra.utils.instantiate(results_config.NERF_MLP_SWOT.data).compute()
Regrdding#
from oceanbench._src.geoprocessing.gridding import grid_to_regular_grid
%%time
ds_duacs = grid_to_regular_grid(
src_grid_ds=ds_duacs.pint.dequantify(),
tgt_grid_ds=ds_natl60.pint.dequantify(),
keep_attrs=False,
)
ds_miost = grid_to_regular_grid(
src_grid_ds=ds_miost.pint.dequantify(),
tgt_grid_ds=ds_natl60.pint.dequantify(),
keep_attrs=False,
)
ds_nerf_siren = grid_to_regular_grid(
src_grid_ds=ds_nerf_siren.pint.dequantify(),
tgt_grid_ds=ds_natl60.pint.dequantify(),
keep_attrs=False,
)
ds_nerf_ffn = grid_to_regular_grid(
src_grid_ds=ds_nerf_ffn.pint.dequantify(),
tgt_grid_ds=ds_natl60.pint.dequantify(),
keep_attrs=False,
)
ds_nerf_mlp = grid_to_regular_grid(
src_grid_ds=ds_nerf_mlp.pint.dequantify(),
tgt_grid_ds=ds_natl60.pint.dequantify(),
keep_attrs=False,
)
Preprocess Chain#
%%time
# load config
psd_config = OmegaConf.load("./configs/metrics.yaml")
ds_natl60 = hydra.utils.instantiate(psd_config.psd_preprocess_chain)(
ds_natl60.pint.dequantify()
)
ds_duacs = hydra.utils.instantiate(psd_config.psd_preprocess_chain)(
ds_duacs.pint.dequantify()
)
ds_miost = hydra.utils.instantiate(psd_config.psd_preprocess_chain)(
ds_miost.pint.dequantify()
)
ds_nerf_siren = hydra.utils.instantiate(psd_config.psd_preprocess_chain)(
ds_nerf_siren.pint.dequantify()
)
ds_nerf_ffn = hydra.utils.instantiate(psd_config.psd_preprocess_chain)(
ds_nerf_ffn.pint.dequantify()
)
ds_nerf_mlp = hydra.utils.instantiate(psd_config.psd_preprocess_chain)(
ds_nerf_mlp.pint.dequantify()
)
Power Spectrum (Spacetime)#
%%time
# load config
psd_config = OmegaConf.load("./configs/metrics.yaml")
ds_natl60_psd = hydra.utils.instantiate(psd_config.psd_spacetime_chain)(
ds_natl60.pint.dequantify()
)
ds_duacs_psd = hydra.utils.instantiate(psd_config.psd_spacetime_chain)(
ds_duacs.pint.dequantify()
)
ds_miost_psd = hydra.utils.instantiate(psd_config.psd_spacetime_chain)(
ds_miost.pint.dequantify()
)
ds_nerf_siren_psd = hydra.utils.instantiate(psd_config.psd_spacetime_chain)(
ds_nerf_siren.pint.dequantify()
)
ds_nerf_ffn_psd = hydra.utils.instantiate(psd_config.psd_spacetime_chain)(
ds_nerf_ffn.pint.dequantify()
)
ds_nerf_mlp_psd = hydra.utils.instantiate(psd_config.psd_spacetime_chain)(
ds_nerf_mlp.pint.dequantify()
)
from jejeqx._src.viz.xarray.psd import PlotPSDSpaceTime, PlotPSDSpaceTimeScore
fig, ax = plt.subplots(ncols=2, nrows=3, figsize=(15, 20))
# NATL60
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax[0, 0])
psd_st_plot.plot_wavelength(
ds_natl60_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[0, 0].set(title="NATL60")
# DUACS
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax[0, 1])
psd_st_plot.plot_wavelength(
ds_duacs_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[0, 1].set(title="DUACS")
# MIOST
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax[1, 0])
psd_st_plot.plot_wavelength(
ds_miost_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[1, 0].set(title="MIOST")
# NERF - MLP
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax[1, 1])
psd_st_plot.plot_wavelength(
ds_nerf_mlp_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[1, 1].set(title="NerF (MLP)")
# NERF - FFN
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax[2, 0])
psd_st_plot.plot_wavelength(
ds_nerf_ffn_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[2, 0].set(title="NerF (FFN)")
# NERF - SIREN
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax[2, 1])
psd_st_plot.plot_wavelength(
ds_nerf_siren_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[2, 1].set(title="NerF (SIREN)")
plt.tight_layout()
plt.gcf().savefig(f"./figures/dc20a/psd/spacetime/dc20a_psd_spacetime_{experiment}.png")
plt.show()
Power Spectrum Score (Spacetime)#
%%time
# load config
psd_config = OmegaConf.load("./configs/metrics.yaml")
ds_psd_duacs_score = hydra.utils.instantiate(
psd_config.psd_spacetime_score,
da=ds_duacs.pint.dequantify(),
da_ref=ds_natl60.pint.dequantify(),
)
ds_psd_miost_score = hydra.utils.instantiate(
psd_config.psd_spacetime_score,
da=ds_miost.pint.dequantify(),
da_ref=ds_natl60.pint.dequantify(),
)
ds_psd_nerf_mlp_score = hydra.utils.instantiate(
psd_config.psd_spacetime_score,
da=ds_nerf_mlp.pint.dequantify(),
da_ref=ds_natl60.pint.dequantify(),
)
ds_psd_nerf_ffn_score = hydra.utils.instantiate(
psd_config.psd_spacetime_score,
da=ds_nerf_ffn.pint.dequantify(),
da_ref=ds_natl60.pint.dequantify(),
)
ds_psd_nerf_siren_score = hydra.utils.instantiate(
psd_config.psd_spacetime_score,
da=ds_nerf_siren.pint.dequantify(),
da_ref=ds_natl60.pint.dequantify(),
)
NATL60#
# NATL60
fig, ax = plt.subplots(figsize=(7, 5.5))
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax)
psd_st_plot.plot_wavelength(
ds_natl60_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
plt.tight_layout()
plt.gcf().savefig(
f"./figures/dc20a/psd/spacetime/dc20a_psd_spacetime_ssh_natl60_{experiment}.png"
)
plt.close()
DUACS#
# DUACS
fig, ax = plt.subplots(figsize=(7, 5.5))
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax)
psd_st_plot.plot_wavelength(
ds_duacs_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
plt.tight_layout()
plt.gcf().savefig(
f"./figures/dc20a/psd/spacetime/dc20a_psd_spacetime_ssh_duacs_{experiment}.png"
)
plt.close()
MIOST#
# DUACS
fig, ax = plt.subplots(figsize=(7, 5.5))
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax)
psd_st_plot.plot_wavelength(
ds_miost_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
plt.tight_layout()
plt.gcf().savefig(
f"./figures/dc20a/psd/spacetime/dc20a_psd_spacetime_ssh_miost_{experiment}.png"
)
plt.close()
NERF (MLP)#
# DUACS
fig, ax = plt.subplots(figsize=(7, 5.5))
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax)
psd_st_plot.plot_wavelength(
ds_nerf_mlp_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
plt.tight_layout()
plt.gcf().savefig(
f"./figures/dc20a/psd/spacetime/dc20a_psd_spacetime_ssh_nerf_mlp_{experiment}.png"
)
plt.close()
NERF (FFN)#
# DUACS
fig, ax = plt.subplots(figsize=(7, 5.5))
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax)
psd_st_plot.plot_wavelength(
ds_nerf_ffn_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
plt.tight_layout()
plt.gcf().savefig(
f"./figures/dc20a/psd/spacetime/dc20a_psd_spacetime_ssh_nerf_ffn_{experiment}.png"
)
plt.close()
NERF (SIREN)#
# DUACS
fig, ax = plt.subplots(figsize=(7, 5.5))
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax)
psd_st_plot.plot_wavelength(
ds_nerf_siren_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
plt.tight_layout()
plt.gcf().savefig(
f"./figures/dc20a/psd/spacetime/dc20a_psd_spacetime_ssh_nerf_siren_{experiment}.png"
)
plt.close()
from jejeqx._src.viz.xarray.psd import PlotPSDSpaceTime, PlotPSDSpaceTimeScore
fig, ax = plt.subplots(ncols=2, nrows=3, figsize=(15, 20))
# NATL60
psd_st_plot = PlotPSDSpaceTime()
psd_st_plot.init_fig(ax=ax[0, 0])
psd_st_plot.plot_wavelength(
ds_natl60_psd.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[0, 0].set(title="NATL60")
# DUACS
psd_st_plot = PlotPSDSpaceTimeScore()
psd_st_plot.init_fig(ax=ax[0, 1])
psd_st_plot.plot_wavelength(
ds_psd_duacs_score.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[0, 1].set(title="DUACS")
# MIOST
psd_st_plot = PlotPSDSpaceTimeScore()
psd_st_plot.init_fig(ax=ax[1, 0])
psd_st_plot.plot_wavelength(
ds_psd_miost_score.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[1, 0].set(title="MIOST")
# NERF - MLP
psd_st_plot = PlotPSDSpaceTimeScore()
psd_st_plot.init_fig(ax=ax[1, 1])
psd_st_plot.plot_wavelength(
ds_psd_nerf_mlp_score.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[1, 1].set(title="NerF (MLP)")
# NERF - FFN
psd_st_plot = PlotPSDSpaceTimeScore()
psd_st_plot.init_fig(ax=ax[2, 0])
psd_st_plot.plot_wavelength(
ds_psd_nerf_ffn_score.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[2, 0].set(title="NerF (FFN)")
# NERF - SIREN
psd_st_plot = PlotPSDSpaceTimeScore()
psd_st_plot.init_fig(ax=ax[2, 1])
psd_st_plot.plot_wavelength(
ds_psd_nerf_siren_score.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
ax[2, 1].set(title="NerF (SIREN)")
plt.tight_layout()
plt.gcf().savefig(
f"./figures/dc20a/psd_score/spacetime/dc20a_psd_spacetime_score_{experiment}.png"
)
plt.show()
DUACS#
# DUACS
fig, ax = plt.subplots(figsize=(7, 5.5))
psd_st_plot = PlotPSDSpaceTimeScore()
psd_st_plot.init_fig(ax=ax)
psd_st_plot.plot_wavelength(
ds_psd_duacs_score.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
plt.tight_layout()
plt.gcf().savefig(
f"./figures//dc20a/psd_score/spacetime/dc20a_psd_spacetime_score_ssh_duacs_{experiment}.png"
)
plt.close()
MIOST#
# DUACS
fig, ax = plt.subplots(figsize=(7, 5.5))
psd_st_plot = PlotPSDSpaceTimeScore()
psd_st_plot.init_fig(ax=ax)
psd_st_plot.plot_wavelength(
ds_psd_miost_score.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
plt.tight_layout()
plt.gcf().savefig(
f"./figures/dc20a/psd_score/spacetime/dc20a_psd_spacetime_score_ssh_miost_{experiment}.png"
)
plt.close()
NERF (MLP)#
# DUACS
fig, ax = plt.subplots(figsize=(7, 5.5))
psd_st_plot = PlotPSDSpaceTimeScore()
psd_st_plot.init_fig(ax=ax)
psd_st_plot.plot_wavelength(
ds_psd_nerf_mlp_score.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
plt.tight_layout()
plt.gcf().savefig(
f"./figures/dc20a/psd_score/spacetime/dc20a_psd_spacetime_score_ssh_nerf_mlp_{experiment}.png"
)
plt.close()
NERF (FFN)#
# DUACS
fig, ax = plt.subplots(figsize=(7, 5.5))
psd_st_plot = PlotPSDSpaceTimeScore()
psd_st_plot.init_fig(ax=ax)
psd_st_plot.plot_wavelength(
ds_psd_nerf_ffn_score.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
plt.tight_layout()
plt.gcf().savefig(
f"./figures/dc20a/psd_score/spacetime/dc20a_psd_spacetime_score_ssh_nerf_ffn_{experiment}.png"
)
plt.close()
NERF (SIREN)#
# DUACS
fig, ax = plt.subplots(figsize=(7, 5.5))
psd_st_plot = PlotPSDSpaceTimeScore()
psd_st_plot.init_fig(ax=ax)
psd_st_plot.plot_wavelength(
ds_psd_nerf_siren_score.ssh,
space_scale=1e3,
space_units="km",
time_units="days",
psd_units="SSH",
)
plt.tight_layout()
plt.gcf().savefig(
f"./figures/dc20a/psd_score/spacetime/dc20a_psd_spacetime_score_ssh_nerf_siren_{experiment}.png"
)
plt.close()