OSSE NADIR#
import autoroot
import jax
import jax.numpy as jnp
import jax.scipy as jsp
import jax.random as jrandom
import numpy as np
import numba as nb
import equinox as eqx
import kernex as kex
import finitediffx as fdx
import diffrax as dfx
import xarray as xr
import pandas as pd
import metpy
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm.notebook import tqdm, trange
from jaxtyping import Float, Array, PyTree, ArrayLike
import wandb
from omegaconf import OmegaConf
import hydra
from sklearn import pipeline
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from jejeqx._src.transforms.dataframe.spatial import Spherical2Cartesian
from jejeqx._src.transforms.dataframe.temporal import TimeDelta
from jejeqx._src.transforms.dataframe.scaling import MinMaxDF
sns.reset_defaults()
sns.set_context(context="talk", font_scale=0.7)
# Ensure TF does not see GPU and grab all GPU memory.
%env XLA_PYTHON_CLIENT_PREALLOCATE=false
jax.config.update("jax_enable_x64", False)
%matplotlib inline
%load_ext autoreload
%autoreload 2
Recap Formulation#
We are interested in learning non-linear functions \(\boldsymbol{f}\).
where the \(\boldsymbol{\phi}(\cdot)\) is a basis function. Neural Fields typically try to learn this basis funciton via a series of composite functions of the form
Problems#
Here, we will demonstrate a problem that a naive network has.
Sparse Observations#
In the previous examples, we were demonstrating how NerFs perform when we have some clean simulation. However, in many real problems, we do not have access to such clean
For this example, we are going to look at the case when we have very sparse observations: as in the case with satellite altimetry data like SWOT. In this case
!ls /gpfswork/rech/cli/uvo53rl/projects/jejeqx/data/natl60/
# # load config
# config_dm = OmegaConf.load('./configs/natl60_obs.yaml')
# # instantiate
# # dm = hydra.utils.instantiate(config_dm.datamodule)
# dm = hydra.utils.instantiate(config_dm.alongtrack_scaled)
# # run setup
# dm.setup()
# # check cunits
# (
# dm.ds_test[:]["spatial"].min(),
# dm.ds_test[:]["spatial"].max(),
# dm.ds_test[:]["temporal"].min(),
# dm.ds_test[:]["temporal"].max(),
# dm.ds_test[:]["data"].min(),
# dm.ds_test[:]["data"].max(),
# )
# len(dm.ds_train)
# load config
config_dm = OmegaConf.load("./configs/natl60_obs.yaml")
# instantiate
# dm = hydra.utils.instantiate(config_dm.datamodule)
dm = hydra.utils.instantiate(config_dm.alongtrack_scaled)
# run setup
dm.setup()
# dm = hydra.utils.instantiate(config_dm.datamodule)
dm_eval = hydra.utils.instantiate(
config_dm.natl60_dc20a_eval,
spatial_transform=dm.spatial_transform,
temporal_transform=dm.temporal_transform,
)
# run setup
dm_eval.setup()
# check cunits
(
dm.ds_test[:]["spatial"].min(),
dm.ds_test[:]["spatial"].max(),
dm.ds_test[:]["temporal"].min(),
dm.ds_test[:]["temporal"].max(),
dm.ds_test[:]["data"].min(),
dm.ds_test[:]["data"].max(),
)
dm.spatial_transform.named_steps
len(dm.ds_train)
xrda = dm.load_xrds()
xrda
# %matplotlib inline
# fig, ax = plt.subplots()
# sub_ds = xrda_obs.isel(time=slice(0,None))
# pts = ax.scatter(sub_ds.lon, sub_ds.lat, c=sub_ds.ssh, s=0.1)
# ax.set(
# xlabel="Longitude",
# ylabel="Latitude",
# )
# plt.colorbar(pts, label="Sea Surface Height [m]")
# plt.tight_layout()
# plt.show()
init = dm.ds_train[:32]
x_init, t_init, y_init = init["spatial"], init["temporal"], init["data"]
x_init.min(), x_init.max(), x_init.shape, t_init.min(), t_init.max(), t_init.shape
Model#
The input data is a coordinate vector, \(\mathbf{x}_\phi\), of the image coordinates.
where \(D_\phi = [\text{x}, \text{y}]\). So we are interested in learning a function, \(\boldsymbol{f}\), such that we can input a coordinate vector and output a scaler/vector value of the pixel value.
# load config
model_config = OmegaConf.load("./configs/model.yaml")
# instantiate
model_ffn = hydra.utils.instantiate(model_config.ffn)
# test output
out = model_ffn(x=x_init[0], t=t_init[0])
assert out.shape == y_init[0].shape
# test output (batched)
out_batch = jax.vmap(model_ffn, in_axes=(0, 0))(x_init, t_init)
assert out_batch.shape == y_init.shape
SIREN Layer#
where \(\mathbf{s}\) is the modulation
# import joblib
# model_config_file = "/gpfswork/rech/cli/uvo53rl/checkpoints/nerfs/siren/nadir4/scratch/config.pkl"
# checkpoint_file = "/gpfswork/rech/cli/uvo53rl/checkpoints/nerfs/siren/nadir4/scratch/checkpoint_model.ckpt"
# old_config = joblib.load(model_config_file)
# model = hydra.utils.instantiate(old_config["model"])
Optimizer (+ Learning Rate)#
For this, we will use a simple adam optimizer with a learning_rate
of 1e-4. From many studies, it appears that a lower learning rate works well with this methods because there is a lot of data. In addition, a bigger batch_size
is also desireable. We will set the num_epochs
to 2_000
which should be good enough for a single image. Obviously more epochs and a better learning rate scheduler would result in better results but this will be sufficient for this demo.
import optax
num_epochs = 250
# load config
opt_config = OmegaConf.load("./configs/optimizer.yaml")
# instantiate
optimizer = hydra.utils.instantiate(opt_config.adamw)
scheduler_config = OmegaConf.load("./configs/lr_scheduler.yaml")
num_steps_per_epoch = len(dm.ds_train)
scheduler = hydra.utils.instantiate(
scheduler_config.warmup_cosine, decay_steps=int(num_epochs * num_steps_per_epoch)
)
optimizer = optax.chain(optimizer, optax.scale_by_schedule(scheduler))
optimizer
Trainer Module#
import glob
import os
from pathlib import Path
from jejeqx._src.trainers.base import TrainerModule
from jejeqx._src.trainers.callbacks import wandb_model_artifact
from jejeqx._src.losses import psnr
class RegressorTrainer(TrainerModule):
def __init__(self, model, optimizer, **kwargs):
super().__init__(model=model, optimizer=optimizer, pl_logger=None, **kwargs)
def create_functions(self):
@eqx.filter_value_and_grad
def mse_loss(model, batch):
x, t, y = batch["spatial"], batch["temporal"], batch["data"]
pred = jax.vmap(model, in_axes=(0, 0))(x, t)
loss = jnp.mean((y - pred) ** 2)
return loss
def train_step(state, batch):
loss, grads = mse_loss(state.params, batch)
state = state.update_state(state, grads)
psnr_loss = psnr(loss)
metrics = {"loss": loss, "psnr": psnr_loss}
return state, loss, metrics
def eval_step(model, batch):
loss, _ = mse_loss(model, batch)
psnr_loss = psnr(loss)
return {"loss": loss, "psnr": psnr_loss}
def test_step(model, batch):
x, t = batch["spatial"], batch["temporal"]
out = jax.vmap(model, in_axes=(0, 0))(x, t)
loss, _ = mse_loss(model, batch)
psnr_loss = psnr(loss)
return out, {"loss": loss, "psnr": psnr_loss}
def predict_step(model, batch):
x, t = batch["spatial"], batch["temporal"]
out = jax.vmap(model, in_axes=(0, 0))(x, t)
return out
return train_step, eval_step, test_step, predict_step
def on_training_end(
self,
):
if self.pl_logger:
save_dir = Path(self.log_dir).joinpath(self.save_name)
self.save_model(save_dir)
wandb_model_artifact(self)
self.pl_logger.finalize("success")
seed = 123
debug = False
enable_progress_bar = False
log_dir = "./"
trainer = RegressorTrainer(
model_ffn,
optimizer,
seed=seed,
debug=debug,
enable_progress_bar=enable_progress_bar,
log_dir=log_dir,
)
train_more = False
%%time
out, metrics = trainer.test_model(dm.test_dataloader())
metrics
try:
trainer.load_model("./checkpoints/checkpoint_model_rff_osse_nadir.ckpt")
# trainer.load_model("./checkpoints/checkpoint_model_rff_ssh.ckpt")
pass
except:
pass
%%time
out, metrics = trainer.test_model(dm.test_dataloader())
metrics
%%time
if train_more:
metrics = trainer.train_model(dm, num_epochs=num_epochs)
out, metrics = trainer.test_model(dm.test_dataloader())
metrics
out.shape
if train_more:
trainer.save_model("./checkpoints/checkpoint_model_rff_osse_nadir.ckpt")
all_metrics = pd.DataFrame()
all_metrics = pd.concat(
[
all_metrics,
pd.DataFrame(
data=[["rff", metrics["loss"], metrics["psnr"]]],
columns=["model", "MSE", "PSNR"],
),
]
)
xrda = dm_eval.load_xrds()
%%time
out, metrics = trainer.test_model(dm_eval.test_dataloader())
metrics
xrda["ssh_rff"] = (("time", "lat", "lon"), dm_eval.data_to_df(out).to_xarray().ssh.data)
xrda["ssh_rff"].attrs["standard_name"] = "Sea Surface Height"
ssh_fn_rff = trainer.model
fig, ax = plt.subplots(ncols=3, figsize=(12, 3))
itime = "2012-10-22"
xrda.ssh.sel(time=itime).plot.pcolormesh(ax=ax[0], cmap="viridis")
ax[0].set(title="Original")
# xrda.ssh_mlp.isel(time=0).plot.pcolormesh(ax=ax[1], cmap="viridis")
# ax[1].set(title="Naive MLP")
xrda.ssh_rff.sel(time=itime).plot.pcolormesh(ax=ax[2], cmap="viridis")
ax[2].set(title="Fourier Features")
plt.tight_layout()
plt.show()
import typing as tp
from jejeqx._src.transforms.xarray.geostrophic import calculate_coriolis
from metpy.constants import earth_gravity
f0: Array = jnp.asarray(1e-5)
g: Array = jnp.asarray(earth_gravity.magnitude)
c: Array = jnp.asarray(1.5)
# f0: Array = jnp.asarray(calculate_coriolis(xrda.lat).data.magnitude)
# g: Array = jnp.asarray(earth_gravity.magnitude)
def create_streamfn(f: tp.Callable, f0: float = 1e-5, g: float = 9.81) -> tp.Callable:
def sfn(x: Array, t: Array) -> Array:
return (g / f0) * f(x, t)
return sfn
def create_gradient_fn(f: tp.Callable) -> tp.Callable:
def fn(x: Array, t: Array) -> Array:
return jax.jacfwd(f)(x, t).squeeze()
return fn
def uv_velocity(grad_psi: Array) -> tp.Tuple[Array, Array]:
dpsi_x, dpsi_y = jnp.split(grad_psi, 2, axis=-1)
u = -dpsi_y
v = dpsi_x
return u, v
def create_laplacian_fn(f: tp.Callable) -> tp.Callable:
def fn(x: Array, t: Array) -> Array:
# return jax.jacfwd(jax.jacrev(f))(x)
H = jax.hessian(f)
L = jnp.diagonal(H(x, t)[0])
return jnp.sum(L, keepdims=True)
return fn
def create_pvort_fn(f: tp.Callable, f0: float = 1e-5, c: float = 1.5) -> tp.Callable:
rvort_fn = create_laplacian_fn(f)
def fn(x: Array, t: Array) -> Array:
rvort = rvort_fn(x, t)
return rvort - (f0 / c) ** 2 * f(x, t)
return fn
def create_advection_fn(f: tp.Callable) -> tp.Callable:
pvort_fn = create_pvort_fn(f)
grad_pvort_fn = create_gradient_fn(pvort_fn)
grad_psi_fn = create_gradient_fn(f)
def fn(x: Array, t: Array) -> Array:
# gradient of potential vorticity
grad_pvort = grad_pvort_fn(x, t)
pvort_x, pvort_y = jnp.split(grad_pvort, 2, axis=-1)
# u, v - velocity
grad_psi = grad_psi_fn(x, t)
u, v = uv_velocity(grad_psi)
return u * pvort_x + v * pvort_y
return fn
ssh_fn = trainer.model
psi_fn = create_streamfn(ssh_fn)
grad_psi_fn = create_gradient_fn(psi_fn)
rvort_fn = create_laplacian_fn(psi_fn)
pvort_fn = create_pvort_fn(psi_fn)
rhs_fn = create_advection_fn(psi_fn)
eta = ssh_fn(x_init[10], y_init[10])
psi = psi_fn(x_init[10], y_init[10])
rvort = rvort_fn(x_init[10], y_init[10])
pvort = pvort_fn(x_init[10], y_init[10])
rhs = rhs_fn(x_init[10], y_init[10])
eta.shape, psi.shape, rvort.shape, pvort.shape, rhs.shape
eta, psi, rvort, pvort, rhs
def qg_loss_fn(f, f0, g, c):
psi_fn = create_streamfn(ff=f, f0=f0, g=g)
grad_psi_fn = create_gradient_fn(psi_fn)
rvort_fn = create_laplacian_fn(psi_fn)
grad_psi_fn = create_gradient_fn(psi_fn)
def residual_fn(x, t):
# calculate psi
psi = psi_fn(x, t)
# calculate relative vorticity
rvort = rvort_fn(x, t)
# calculate the gradient of psi
grad_psi = grad_fn(x, t)
# calculate u, v
u, v = uv_velocity(grad_psi)
dq_dx, dq_dy = grad_fn(
# calculate advection
rhs = u *
return None
return residual_fn
where:
Evaluation#
We will predict the whole dataset at the full resolution available for the same time period.
01-June-2013 :--> 15-June-2013
from dataclasses import dataclass, field
from typing import List, Dict
@dataclass
class SSHDMEVAL:
_target_: str = "jejeqx._src.datamodules.coords.EvalCoordDM"
paths: str = "/gpfswork/rech/yrf/commun/data_challenges/dc20a_osse/test/dc_ref/NATL60-CJM165_GULFSTREAM*"
batch_size: int = 10_000
shuffle: bool = False
train_size: float = 0.80
decode_times: bool = True
evaluation: bool = True
spatial_coords: List = field(default_factory=lambda: ["lat", "lon"])
temporal_coords: List = field(default_factory=lambda: ["time"])
variables: List = field(default_factory=lambda: ["sossheig"])
coarsen: Dict = field(default_factory=lambda: {"lon": 2, "lat": 2})
resample: str = "1D"
%%time
# select = {"time": slice("2012-10-22", "2012-11-22")}
select = {"time": slice("2012-10-22", "2012-12-02")}
config_dm = OmegaConf.structured(SSHDMEVAL())
dm_eval = hydra.utils.instantiate(
config_dm,
select=select,
spatial_transform=dm.spatial_transform,
temporal_transform=dm.temporal_transform,
)
dm_eval.setup()
print(f"Num Points: {len(dm_eval.ds_test):,}")
%%time
xrda = dm_eval.load_xrds()
%%time
out, metrics = trainer.test_model(dm_eval.test_dataloader())
metrics
xrda["ssh_rff"] = dm_eval.data_to_df(out).to_xarray().sossheig
import common_utils as cutils
ds_rff = cutils.calculate_physical_quantities(xrda.ssh_rff)
ds_natl60 = cutils.calculate_physical_quantities(xrda.sossheig)
fig, ax = cutils.plot_analysis_vars(
[
ds_natl60.isel(time=-1),
ds_rff.isel(time=-1),
]
)
plt.show()
ds_psd_natl60 = cutils.calculate_isotropic_psd(ds_natl60)
ds_psd_rff = cutils.calculate_isotropic_psd(ds_rff)
fig, ax = cutils.plot_analysis_psd_iso(
[
ds_psd_natl60,
ds_psd_rff,
],
[
"NATL60",
"RFE",
],
)
plt.show()
ds_psd_scores = cutils.calculate_isotropic_psd_score(ds_rff, ds_natl60)
cutils.plot_analysis_psd_iso_score([ds_psd_scores], ["SIREN"], ["k"])
plt.show()
for ivar in ds_psd_scores:
resolved_spatial_scale = ds_psd_scores[ivar].attrs["resolved_scale_space"] / 1e3
print(f"Wavelength [km]: {resolved_spatial_scale:.2f} [{ivar.upper()}]")
print(f"Wavelength [degree]: {resolved_spatial_scale/111:.2f} [{ivar.upper()}]")
ds_psd_natl60 = cutils.calculate_spacetime_psd(ds_natl60)
ds_psd_rff = cutils.calculate_spacetime_psd(ds_rff)
fig, ax = cutils.plot_analysis_psd_spacetime(
[
ds_psd_natl60,
ds_psd_rff,
],
[
"NATL60",
"RFE",
],
)
plt.show()
ds_psd_rff = cutils.calculate_spacetime_psd_score(ds_rff, ds_natl60)
for ivar in ds_psd_rff:
resolved_spatial_scale = ds_psd_rff[ivar].attrs["resolved_scale_space"] / 1e3
print(f"Resolved Scale [km]: {resolved_spatial_scale:.2f} [{ivar.upper()}]")
resolved_temporal_scale = ds_psd_rff[ivar].attrs["resolved_scale_time"]
print(f"Resolved Scale [days]: {resolved_temporal_scale:.2f} [{ivar.upper()}]")
_ = cutils.plot_analysis_psd_spacetime_score([ds_psd_rff], ["rff"])