Skip to main content
Ctrl+K
Logo image
  • Overview

Resources

  • Python
    • Integraded Development Environment (IDE)
    • Standard Python Stack
    • Earth Science Stack
    • Deep Learning Stack
    • Scaling Stack
    • Good Code

Tutorials

  • My JAX Journey
    • Ecosystem
    • vmap
    • Jit
    • Classes
    • Algorithms
      • Bisection search
      • Kernel Derivatives
      • Gaussianization Flows
    • 12 Steps to Navier-Stokes
      • 1D Linear Convection
  • Remote Computing
    • SSH Configuration
    • Conda 4 Remote Servers
    • Jupyter Lab 4 Remote Servers

Notes

  • GMT of Learning
    • Hierarchical Representation
    • Functa
    • Spatial Discretization
    • Temporal Discretization
    • Learning
    • State Estimation
    • Parameter Estimation
    • Bi-Level Optimization
  • Modeling Uncertainty
  • Bayesian
    • Language of Uncertainty
    • Models
    • Inference Schemes
    • Variational Inference
    • Conditional Variational Inference
    • Confidence Intervals
    • Regression
  • Sleeper Concepts
    • Gaussian Distributions
    • Change of Variables
    • Identity Trick
    • Inverse Function Theorem
    • Jensens Inequality
    • Linear Algebra Tricks
  • Kernel Methods
    • Kernel Derivatives
    • RV Coefficient
    • Congruence Coefficient
    • HSIC
    • Maximum Mean Discrepancy (MMD)
  • Gaussian Processes
    • Basics
    • Literature Review
    • Conjugate Gradients
    • Sparse Gaussian Processes
    • Algorithms
      • GP from Scratch
      • Sparse GP From Scratch
    • Input Uncertainty in GPs
  • Similarity
  • Information Theory
    • Measures
      • Information Theory
      • Entropy & Relative Entropy
      • Mutual Information and Total Correlation
    • Information Theory Measures
      • Classic Methods
      • Entropy Estimator - Histogram
      • Experiment - RBIG Sample Consistency
  • Normalizing Flows
    • Linear Layers
    • Coupling Layers
    • Conditional Normalizing Flows
    • Multiscale
    • Minimization Problems
    • Losses
    • Lecture I - Iterative Gaussianization
      • 1.1 - Univariate Gaussianization
      • 1.2 - Marginal Gaussianization
      • 1.2 - Iterative Gaussianization
    • Lecture II - Gaussianization Flows
      • Parameterized Marginal Gaussianization
      • Parameterized Rotations
      • Example - 2D Plane
  • Neural Fields
    • Formulation
    • Literature Review
    • Physics-Informed Loss
  • Data Assimilation
    • Dynamical Systems
    • Optimal Interpolation
    • Interpolation Problem
    • Emulation
    • Inverse Problems
    • Projects
    • Algorithms
      • Markov Models
      • Gauss-Markov Models
      • Kalman Filter
      • Normalizing Kalman Filter
      • Ensemble Kalman Filter
      • Deep Markov Model
      • 4DVarNet
      • Markovian Gaussian Processes
    • Notebooks
  • Miscellaneous Notes
    • Generative Models
    • Diffusion Models
    • Fixed-Point Methods
    • Bi-Level Optimization
    • Differential Operators
    • QG Formulations
    • Elliptical PDE Solvers
    • Inverse Problems

Cheat Sheets

  • Bash
  • Command Line
  • Python
  • Repository
  • Open issue
  • .md

Algorithms

Algorithms#

  • Kalman Filter

  • Deep Markov Models

  • Normalizing Kalman Filters

  • Ensemble Kalman Filters

  • 4DVar(Net)

previous

Projects

next

Markov Models

By J. Emmanuel Johnson

© Copyright 2023.