Solving QG Equations - I
Given the equations in terms of q and \(\psi\).
\[\begin{split}
\begin{aligned}
\partial_t q + \det J(\psi, q) &= 0 \\
\psi &= \frac{g}{f}\eta \\
q &= \nabla^2 \psi - \frac{1}{L_R^2}\psi
\end{aligned}
\end{split}\]
We are stepping through the \(q\) term.
\[
\partial_t q = - \det(\psi, q)
\]
Step I: Find \(\psi\)
We need to calculate \(\psi\) from \(q\) using the expression above.
\[\begin{split}
\begin{aligned}
\nabla^2 \psi - \frac{1}{L_R^2}\psi &= q \\
(\nabla^2 - \frac{1}{L_R^2})\psi &= q
\end{aligned}
\end{split}\]
which involves solving a linear system of equations:
\[
\psi = (\nabla^2 - \frac{1}{L_R^2})^{-1}q
\]
Step II: Find the determinant Jacobian
\[\begin{split}
\begin{aligned}
-\det J(\psi, q) &= \left(\frac{\partial\psi}{\partial y}\frac{\partial q}{\partial x} - \frac{\partial\psi}{\partial x}\frac{\partial q}{\partial y} \right) \\
\end{aligned}
\end{split}\]
Step III: Put Everything together and step
\[
\begin{aligned}
\partial_t q = (\nabla^2 - \frac{1}{L_R^2})^{-1}\left(\frac{\partial\psi}{\partial y}\frac{\partial q}{\partial x} - \frac{\partial\psi}{\partial x}\frac{\partial q}{\partial y} \right)
\end{aligned}
\]
Solving QG Equations for SSH
\[
\partial_t \left(\nabla^2 - \frac{1}{L_R^2} \right)\eta + \frac{g}{f}\det J(\eta, \nabla^2\eta) = 0
\]
Step I: Calculate Determinant Jacobian
\[\begin{split}
\begin{aligned}
-\alpha\beta\det J(\eta, \nabla^2\eta) &=
\alpha\beta\left(\frac{\partial\eta}{\partial y}\frac{\partial \nabla^2\eta}{\partial x} - \frac{\partial\eta}{\partial x}\frac{\partial \nabla^2\eta}{\partial y} \right) \\
\end{aligned}
\end{split}\]
Step II: Isolate \(\eta\)
\[\begin{split}
\begin{aligned}
\partial_t(\nabla^2 - \frac{1}{L_R^2})\eta &= F \\
(\nabla^2 - \frac{1}{L_R^2})\partial_t\eta &= F \\
\end{aligned}
\end{split}\]
which involves solving a linear system of equations:
\[
\partial_t\eta = (\nabla^2 - \frac{1}{L_R^2})^{-1}F
\]
Step III: Step Forward
\[
\eta^{n+1} = \eta^n + \Delta t\boldsymbol{RHS}
\]