Minimization Problems#

Recall the bilevel optimization problem.

\[\begin{split} \begin{aligned} \boldsymbol{\theta}^* &= \underset{\boldsymbol{\theta}}{\text{argmin }} \mathcal{L}(\boldsymbol{\theta},\mathbf{x}^*(\boldsymbol{\theta})) \\ \mathbf{x}^*(\boldsymbol{\theta}) &= \underset{\mathbf{x}}{\text{argmin }} \mathcal{U}(\mathbf{x},\boldsymbol{\theta}) \end{aligned} \end{split}\]

We can define a simple minimization problem as

\[ x^* = \underset{\mathbf{x}}{\text{argmin }} \mathcal{U}(\mathbf{x},\boldsymbol{\theta}) \]

To be more explicit, let’s have

\[ x^* = \underset{\mathbf{x}}{\text{argmin }} ||y-Ax||^2 - \log p_\theta(x) \]

We let the normalizing flow be the prior!

\[ \log p_\theta(x) = \log p_z(T(x)) + \log\det|\nabla_x T_\theta(x)| \]

or equivalently

\[ \log p_\theta(x) = \log p_z(z) + \log\det|\nabla_z T_\theta^{-1}(z)| \]

We define the same minimization function in the transform domain, \(z\).

\[ \mathcal{L}_z(x,\theta) = \underset{\mathbf{z}}{\text{argmin }} \]
\[ \mathcal{L}_z(z,\theta) = ||y-AT_\theta(z)||^2 - \log\mathcal{G}(z) \]

Proof:

\[ p(x|y) \propto \frac{1}{Z}\exp(-||y-Ax||^2)p_\theta(x) \]

We can compute expectations of the posterior

\[ \mathbb{E}_{x\sim p(x|y)}[f(x)] = \int_{} f(x)\exp(-||y-Ax||^2)p_\theta(x)dx \]

Let’s describe the function

\[ F(x):=f(x)\exp(-||y-Ax||^2) \]

We can do the change of variables here:

\[ F(T_\theta(z)):=f(T_\theta(z))\exp(-||y-AT_\theta(z)||^2) \]

Now we can plug this back into the integral

\[ \mathbb{E}_{z\sim p(z|y)}[f(z)] = \int_{} f(T_\theta(z))\exp(-||y-AT_\theta(z)||^2)\eta(z)dz \]

So we have our loss function again

\[ \mathcal{L}_z(z,\theta) = ||y-AT_\theta(z)||^2 - \log\mathcal{G}(z) \]

Proof: