Minimization Problems#
Recall the bilevel optimization problem.
\[\begin{split}
\begin{aligned}
\boldsymbol{\theta}^* &= \underset{\boldsymbol{\theta}}{\text{argmin }} \mathcal{L}(\boldsymbol{\theta},\mathbf{x}^*(\boldsymbol{\theta})) \\
\mathbf{x}^*(\boldsymbol{\theta}) &= \underset{\mathbf{x}}{\text{argmin }} \mathcal{U}(\mathbf{x},\boldsymbol{\theta})
\end{aligned}
\end{split}\]
We can define a simple minimization problem as
\[
x^* = \underset{\mathbf{x}}{\text{argmin }} \mathcal{U}(\mathbf{x},\boldsymbol{\theta})
\]
To be more explicit, let’s have
\[
x^* = \underset{\mathbf{x}}{\text{argmin }} ||y-Ax||^2 - \log p_\theta(x)
\]
We let the normalizing flow be the prior!
\[
\log p_\theta(x) = \log p_z(T(x)) + \log\det|\nabla_x T_\theta(x)|
\]
or equivalently
\[
\log p_\theta(x) = \log p_z(z) + \log\det|\nabla_z T_\theta^{-1}(z)|
\]
We define the same minimization function in the transform domain, \(z\).
\[
\mathcal{L}_z(x,\theta) = \underset{\mathbf{z}}{\text{argmin }}
\]
\[
\mathcal{L}_z(z,\theta) = ||y-AT_\theta(z)||^2 - \log\mathcal{G}(z)
\]
Proof:
\[
p(x|y) \propto \frac{1}{Z}\exp(-||y-Ax||^2)p_\theta(x)
\]
We can compute expectations of the posterior
\[
\mathbb{E}_{x\sim p(x|y)}[f(x)] = \int_{} f(x)\exp(-||y-Ax||^2)p_\theta(x)dx
\]
Let’s describe the function
\[
F(x):=f(x)\exp(-||y-Ax||^2)
\]
We can do the change of variables here:
\[
F(T_\theta(z)):=f(T_\theta(z))\exp(-||y-AT_\theta(z)||^2)
\]
Now we can plug this back into the integral
\[
\mathbb{E}_{z\sim p(z|y)}[f(z)] = \int_{} f(T_\theta(z))\exp(-||y-AT_\theta(z)||^2)\eta(z)dz
\]
So we have our loss function again
\[
\mathcal{L}_z(z,\theta) = ||y-AT_\theta(z)||^2 - \log\mathcal{G}(z)
\]
Proof: