Differential Operators#


Difference#

This is the case where we have a function \(\boldsymbol{f}:\mathbb{R}^D \rightarrow \mathbb{R}^P\) which maps an input vector \(\vec{\mathbf{x}}\) to a scalar value. We denote this operation as

\[\begin{split} \begin{aligned} \text{Difference} &:= \partial_x \boldsymbol{f} \\ &= \nabla_i \boldsymbol{f} \end{aligned} \end{split}\]

So this operator is

\[ \partial_i \boldsymbol{f}: \mathbb{R} \rightarrow \mathbb{R} \]

where \(_i\) is the index of the input vector, \(\vec{\mathbf{x}}\), of the function \(\boldsymbol{f}\). We can also right the functional transformation version

\[ \partial_i [\boldsymbol{f}](\vec{\mathbf{x}}): \mathbb{R}^D \rightarrow \mathbb{R} \]

Gradient#

The directions of the fastest change and the directional derivative. Tells me locally where something is increasing or decreasing the fastest. Tells us the rate of change at every point (a vector direction of change)

Turns a scalar field into a vector field!

\[\begin{split} \begin{aligned} \text{Gradient} &:=\text{grad}(\boldsymbol{f}) \\ &= \boldsymbol{\nabla} \boldsymbol{f}\\ &= \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} \cdot \boldsymbol{f} \\ &= \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix}\\ &= \boldsymbol{J}_i(\boldsymbol{f}) \end{aligned} \end{split}\]

So the operation is:

\[ \text{grad}(\boldsymbol{f}) = \boldsymbol{\nabla}\boldsymbol{f}: \mathbb{R} \rightarrow \mathbb{R}^D \]

where \(D\) is the size of the input vector, \(\vec{\mathbf{x}}\). Let’s take a scalar field with vector-valued inputs.

\[ f=\boldsymbol{f}(x,y,z)=\boldsymbol{f}(\vec{\mathbf{x}}) \hspace{10mm} f:\mathbb{R}^3\rightarrow \mathbb{R} \]

Then the gradient is

\[\begin{split} \text{grad}(\boldsymbol{f}) = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x} \\ \frac{\partial \boldsymbol{f}}{\partial y} \\ \frac{\partial \boldsymbol{f}}{\partial z} \end{bmatrix} \end{split}\]

We can also write the functional transformation version:

\[ \text{grad}[\boldsymbol{f}](\vec{\mathbf{x}}) = \boldsymbol{\nabla}\boldsymbol{f}: \mathbb{R}^D \rightarrow \mathbb{R}^D \]

Vector Fields#


Jacobian#


Divergence#

Turns a vector field into a scalar field. It measures locally how much stuff is flowing away or flowing towards a single point in space. Basically, how much the vector field is expanding outwards or into a point in space!

How we measure sources and sinks!

Let’s take a vector valued function:

\[ \vec{\boldsymbol{f}}:\mathbb{R}^{D}\rightarrow\mathbb{R}^D \]

The divergence operator does the following transformation:

\[ \text{div }(\vec{\boldsymbol{f}}): \mathbb{R}^D \rightarrow \mathbb{R} \]

Then the divergence operator is the following:

\[\begin{split} \begin{aligned} \text{Divergence } &:= \text{div }(\vec{\boldsymbol{f}}) \\ &= \vec{\nabla}\cdot \vec{\boldsymbol{f}} \\ &= \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)\cdot \left(f_1, f_2, f_3\right) \\ &= \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right)\cdot \left(f\hat{i} + f\hat{j} + f\hat{k}\right) \\ &= \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z} \end{aligned} \end{split}\]

We can also write the functional transformation version that maps a vector input, \(\vec{\mathbf{x}}\), through the transformation \(\boldsymbol{f}(\cdot)\) to the output of the divergence operator \(\text{div}(\cdot)\). We have the following:

\[ \text{div}\left[\vec{\boldsymbol{f}}\right](\vec{\mathbf{x}}): \mathbb{R}^D \rightarrow \mathbb{R} \]

Curl#

How we measure rotation!

\[\begin{split} \begin{aligned} \text{Curl} &:= \text{curl}(\vec{\boldsymbol{f}}) \\ &= \nabla\times \vec{\boldsymbol{f}} \\ &= \det \begin{vmatrix} \hat{i} & \hat{j} & \hat{j} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{vmatrix} \\ &= \begin{bmatrix} \frac{\partial f_2}{\partial z} - \frac{\partial f_3}{\partial y}\\ \frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x} \\ \frac{\partial f_1}{\partial z} - \frac{\partial f_2}{\partial y} \end{bmatrix} \\ &= \left(\frac{\partial f_2}{\partial z} - \frac{\partial f_3}{\partial y}\right)\hat{i} \left( \frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}\right)\hat{j} \left( \frac{\partial f_1}{\partial z} - \frac{\partial f_2}{\partial y}\right)\hat{k} \end{aligned} \end{split}\]

We can write this as

\[ \text{curl}(\vec{\boldsymbol{f}}): \mathbb{R}^D \rightarrow \mathbb{R}^D \]

We can also write the functional transformation version

\[ \text{curl}[\vec{\boldsymbol{f}}](\vec{\mathbf{x}}): \mathbb{R}^D \rightarrow \mathbb{R}^D \]

Laplacian#

The second derivative

\[\begin{split} \begin{aligned} \text{Laplacian } &:= \Delta u \\ &= \nabla^2 u \\ &= \text{div}(\nabla u) \\ &= \partial_{xx}u + \partial_{yy}u + \partial_{zz}u \end{aligned} \end{split}\]

We can also write this as the functional transformation version

\[ \text{Laplacian}[\boldsymbol{f}](\vec{mathbf{x}}): \mathbf{R}^D \rightarrow \mathbf{R} \]

Material Derivative#

Scalar Field#

Given a scalar field:

\[ \phi:=\boldsymbol{\phi}(\vec{\mathbf{x}},t)=\boldsymbol{\phi}(x,y,z,t) \hspace{10mm} \phi:\mathbb{R}^3\times\mathbb{R}\rightarrow \mathbb{R} \]

We can write the Material derivative as

\[ \frac{D\phi}{Dt} := \frac{\partial \phi}{\partial t} + \vec{\mathbf{u}} \cdot \nabla \phi \]

where

\[ \vec{\mathbf{u}} \cdot \nabla \phi = u_1\frac{\partial \phi}{\partial x} + u_2\frac{\partial \phi}{\partial y} + u_3\frac{\partial \phi}{\partial z} \]

Vector Field#

Given a vector valued field:

\[ \vec{\boldsymbol{F}}:=\vec{\boldsymbol{F}}(\vec{\mathbf{x}},t)= \vec{\boldsymbol{F}}(x,y,z,t) \hspace{10mm} \vec{\boldsymbol{F}}:\mathbb{R}^3\times\mathbb{R}\rightarrow \mathbb{R}^{3} \]

We can write the Material derivative as

\[ \frac{D \vec{\boldsymbol{F}}}{Dt} := \frac{\partial \vec{\boldsymbol{F}}}{\partial t} + \vec{\mathbf{u}} \cdot \nabla \vec{\boldsymbol{F}} \]

where

\[ \vec{\mathbf{u}} \cdot \nabla \vec{\boldsymbol{F}} = u_1\frac{\partial \vec{\boldsymbol{F}}}{\partial x} + u_2\frac{\partial \vec{\boldsymbol{F}}}{\partial y} + u_3\frac{\partial \vec{\boldsymbol{F}}}{\partial z} \]

Determinant Jacobian#

From a differential operator perspective, we have

\[\begin{split} \begin{aligned} \det\boldsymbol{J}(A,B) &= -\det\boldsymbol{J}(B,A)\\ &= \mathbf{k}\cdot\left(\nabla A\times \nabla B\right) \\ &= - \mathbf{k}\cdot \nabla\times\left(A\nabla B\right) \\ &= - \mathbf{k}\cdot \nabla\times\left(B\nabla A\right) \\ &= -\mathbf{k}\text{ curl}\left(B\nabla A\right) \end{aligned} \end{split}\]

If we think of Cartesian coordinates, we have

\[\begin{split} \begin{aligned} \det \boldsymbol{J}(A,B) &= \frac{\partial A}{\partial x}\frac{\partial B}{\partial y} -\frac{\partial A}{\partial y}\frac{\partial B}{\partial x} \\ &= \frac{\partial }{\partial x}\left(A\frac{\partial B}{\partial y}\right) -\frac{\partial }{\partial y}\left(A\frac{\partial B}{\partial x}\right) \\ &= \frac{\partial }{\partial y}\left(B\frac{\partial A}{\partial x}\right) -\frac{\partial }{\partial x}\left(B\frac{\partial A}{\partial y}\right) \\ \end{aligned} \end{split}\]

We can write this transformation as

\[ \det\boldsymbol{J}(\boldsymbol{f}, \boldsymbol{g}): \mathbf{R}^D\times\mathbb{R}^{D} \rightarrow \mathbf{R}^{D} \]

We can also write this as the functional transformation version

\[ \det\boldsymbol{J}[\boldsymbol{f}, \boldsymbol{g}](\vec{\mathbf{x}}): \mathbf{R}^D \rightarrow \mathbf{R} \]

Helmholtz Equation#

\[\begin{split} \begin{aligned} \nabla \boldsymbol{f}(\vec{\mathbf{x}}) - k^2 \boldsymbol{f}(\vec{\mathbf{x}}) &= 0 \\ \left( \nabla - k^2 \right)\boldsymbol{f}(\vec{\mathbf{x}}) &= 0 \end{aligned} \end{split}\]

Helmholtz Decomposition#

\[ \vec{\boldsymbol{f}} = \underbrace{- \nabla\phi}_{\text{Div-Free}}+ \underbrace{\nabla\times \mathbf{A}}_{\text{Curl-Free}} \]